• Title/Summary/Keyword: 1-DOF Model

Search Result 176, Processing Time 0.028 seconds

Experimental identification of the six DOF C.G.S., Algeria, shaking table system

  • Airouche, Abdelhalim;Bechtoula, Hakim;Aknouche, Hassan;Thoen, Bradford K.;Benouar, Djillali
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.137-154
    • /
    • 2014
  • Servohydraulic shaking tables are being increasingly used in the field of earthquake engineering. They play a critical role in the advancement of the research state and remain one of the valuable tools for seismic testing. Recently, the National Earthquake Engineering Research Center, CGS, has acquired a 6.1m x 6.1 m shaking table system which has a six degree-of-freedom testing capability. The maximum specimen mass that can be tested on the shaking table is 60 t. This facility is designed specially for testing a complete civil engineering structures, substructures and structural elements up to collapse or ultimate limit states. It can also be used for qualification testing of industrial equipments. The current paper presents the main findings of the experimental shake-down characterization testing of the CGS shaking table. The test program carried out in this study included random white noise and harmonic tests. These tests were performed along each of the six degrees of freedom, three translations and three rotations. This investigation provides fundamental parameters that are required and essential while elaborating a realistic model of the CGS shaking table. Also presented in this paper, is the numerical model of the shaking table that was established and validated.

SLIP CONTROLLER DESIGN FOR TRACTION CONTROL SYSTEM

  • Jung, H.;Kwak, B.;Park, Y.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.48-55
    • /
    • 2000
  • Two major roles of the traction control system (TCS) are to guarantee the acceleration performance and directional stability even in extreme road conditions, under which average drivers may not control the car properly. Commercial TCSs use experiential methods such as lookup table and gain-scheduling to achieve proper performance under various road and vehicle conditions. This paper proposes a new slip controller which uses the brake and the throttle actuator simultaneously. To avoid measurement problems and to get a simple structure, the brake controller and the throttle controller are designed using Lyapunov redesign method and multiple sliding mode control respectively. Through the hybrid use of brake and throttle controllers, the vehicle is insensitive to the variation of the vehicle mass, brake gain and road condition and can achieve the required acceleration performance. The proposed method is validated with simulations based on 15 DOF passenger car model.

  • PDF

Stochastic response spectra for an actively-controlled structure

  • Mochio, Takashi
    • Structural Engineering and Mechanics
    • /
    • v.32 no.1
    • /
    • pp.179-191
    • /
    • 2009
  • A stochastic response spectrum method is proposed for simple evaluation of the structural response of an actively controlled aseismic structure. The response spectrum is constructed assuming a linear structure with an active mass damper (AMD) system, and an earthquake wave model given by the product of a non-stationary envelope function and a stationary Gaussian random process with Kanai-Tajimi power spectral density. The control design is executed using a linear quadratic Gaussian control strategy for an enlarged state space system, and the response amplification factor is given by the combination of the obtained statistical response values and extreme value theory. The response spectrum thus produced can be used for simple dynamical analyses. The response factors obtained by this method for a multi-degree-of-freedom structure are shown to be comparable with those determined by numerical simulations, demonstrating the validity and utility of the proposed technique as a simple design tool. This method is expected to be useful for engineers in the initial design stage for structures with active aseismic control.

Modulation of Impedance Parameters for a Teleoperator Using Distance Measurement (거리센서를 이용한 원격 조종 장치의 임피던스 변조)

  • 송지혁;박종현;김상철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.84-84
    • /
    • 2000
  • This paper proposes a new impedance control scheme based on a variable stiffness matrix for a bilateraL teleoperation. In this scheme, stiffness matrix of the impedance model in the slave is modulated based on the distance, measured by an ultrasonic sensor, between the slave and environment. At the same time, the stiffness matrix of the master is also changed accordingly in order for the impedance parameters of the combined system to remain constant The proposed scheme is implemented on a 1-dof master/slave system to perform a simple task. In the experiments, the teleoperator with the impedance parameter modulation shows better performance than one with fixed impedance parameters, especially in reducing task execution time and in avoiding excessive external forces.

  • PDF

Performance Evaluation of Control Algorithms for 1/2 Tracked Vehicle with Semi-Active Suspension System (1/2 궤도차량에 대한 반능동 현수장치 제어 알고리즘들의 성능평가)

  • 윤일중;임재필;신휘범;이진규;신민재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.139-147
    • /
    • 2001
  • 2 DOF half-car model with 6 semi-active suspension units is utilized to evaluate the tracked vehicle dynamic performance simulated by several suspension control algorithms. The target of this research is to improve the ride comfort to maintain operator's handling capability when the tracked vehicle travels fast on the rough road. The control algorithms for suspension systems, such as full state feedback active, full state feedback semi-active, sky-hook active, sky-hook semi-active, and on-off systems, are evaluated and analyzed in view point of ride comfort. The dynamic performances of vehicle are expressed and evaluated by vibratory characteristic evaluation curves, performance indices and frequency characteristic curves. The simulation results show that the performances of sky-hook algorithms for ride comfort nearly follow those of full state feedback algorithms and on-off algorithm is recommendatory when the vehicle runs relatively fast.

  • PDF

Torque Sensorless Decentralized Position/Force Control for Constrained Reconfigurable Manipulator via Non-fragile H Dynamic Output Feedback

  • Zhou, Fan;Dong, Bo;Li, Yuanchun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.418-429
    • /
    • 2018
  • This paper studies the decentralized position/force control problem for constrained reconfigurable manipulator without torque sensing. A novel joint torque estimation scheme that exploits the existing structural elasticity of the manipulator joint with harmonic drive model is applied for each joint module. Based on the estimated joint torque and dynamic output feedback technique, a decentralized position/force control strategy is presented. In order to solve the problem of controller parameter perturbation, the non-fragile robust technique is introduced into the dynamic output feedback controller. Subsequently, the stability of the closed-loop system is proved using the Lyapunov theory and linear matrix inequality (LMI) technique. Finally, two 2-DOF constrained reconfigurable manipulators with different configurations are applied to verify the effectiveness of the proposed control scheme in numerical simulation.

Simplified finite element modelling of non uniform tall building structures comprising wall and frame assemblies including P-Δ effects

  • Belhadj, Abdesselem Hichem;Meftah, Sid Ahmed
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.253-273
    • /
    • 2015
  • The current investigation has been conducted to examine the effect of gravity loads on the seismic responses of the doubly asymmetric, three-dimensional structures comprising walls and frames. The proposed model includes the P-${\Delta}$ effects induced by the building weight. Based on the variational approach, a 3D finite element with two nodes and six DOF per node including P-${\Delta}$ effects is formulated. Dynamic and static governing equations are derived for dynamic and buckling analyzes of buildings braced by wall-frame systems. The influences of P-${\Delta}$ effects and height of the building on tip displacements under Hachinohe earthquake record are investigated through many structural examples.

FEM-based Bayesian Optimization of Electromagnet Configuration for Enhancing Microrobot Actuation (마이크로 로봇 작동 성능 향상을 위한 FEM 기반의 전자석 배치 베이지안 최적화)

  • Hyeokjin Kweon;Donghoon Son
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2024
  • This paper introduces an approach to enhance the performance of magnetic manipulation systems for microrobot actuation. A variety of eight-electromagnet configurations have been proposed to date. The previous study revealed that achieving 5 degrees of freedom (5-DOF) control necessitates at least eight electromagnets without encountering workspace singularities. But so far, the research considering the influence of iron cores embedded in electromagnets has not been conducted. This paper offers a novel approach to optimizing electromagnet configurations that effectively consider the influence of iron cores. The proposed methodology integrates probabilistic optimization with finite element methods (FEM), using Bayesian Optimization (BO). The Bayesian optimization aims to optimize the worst-case magnetic force generation for enhancing the performance of magnetic manipulation system. The proposed simulation-based model achieves approximately 20% improvement compared to previous systems in terms of actuation performance. This study has the potential for enhancing magnetic manipulation systems for microrobot control, particularly in medical and microscale technology applications.

A Numerical Study on Improvement in Seismic Performance of Nuclear Components by Applying Dynamic Absorber (동흡진기 적용을 통한 원전기기의 내진성능향상에 관한 수치적 연구)

  • Kwag, Shinyoung;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • In this paper, we study the applicability of Tuned Mass Damper(TMD) to improve seismic performance of piping system under earthquake loading. For this purpose, a mode analysis of the target pipeline is performed, and TMD installation locations are selected as important modes with relatively large mass participation ratio in each direction. In order to design the TMD at selected positions, each corresponding mode is replaced with a SDOF damped model, and accordingly the corresponding pipeline is converted into a 2-DOF system by considering the TMD as a SDOF damped model. Then, optimal design values of the TMD, which can minimize the dynamic amplification factor of the transformed 2-DOF system, are derived through GA optimization method. The proposed TMD design values are applied to the pipeline numerical model to analyze seismic performance with and without TMD installation. As a result of numerical analyses, it is confirmed that the directional acceleration responses, the maximum normal stresses and directional reaction forces of the pipeline system are reduced, quite a lot. The results of this study are expected to be used as basic information with respect to the improvement of the seismic performance of the piping system in the future.

Modeling and Validation of 3DOF Dynamics of Maglev Vehicle Considering Guideway (궤도 선형을 고려한 자기부상 열차의 3자유도 동역학 모델 수립 및 검증)

  • Park, Hyeon-cheol;Noh, Myounggyu;Kang, Heung-Sik;Han, Hyung-Suk;Kim, Chang-Hyun;Park, Young-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • Magnetically levitated (Maglev) vehicles maintain a constant air gap between guideway and car bogie, and thereby achieves non-contact riding. Since the straightness and the flatness of the guideway directly affect the stability of levitation as well as the ride comfort, it is necessary to monitor the status of the guideway and to alert the train operators to any abnormal conditions. In order to develop a signal processing algorithm that extracts guideway irregularities from sensor data, virtual testing using a simulation model would be convenient for analyzing the exact effects of any input as long as the model describes the actual system accurately. Simulation model can also be used as an estimation model. In this paper, we develop a state-space dynamic model of a maglev vehicle system, running on the guideway that contains jumps. This model contains not only the dynamics of the vehicle, but also the descriptions of the power amplifier, the anti-aliasing filter and the sampling delay. A test rig is built for the validation of the model. The test rig consists of a small-scale maglev vehicle, tracks with artificial jumps, and various sensors measuring displacements, accelerations, and coil currents. The experimental data matches well with those from the simulation model, indicating the validity of the model.