• Title/Summary/Keyword: 1/5,000수치지도

Search Result 141, Processing Time 0.022 seconds

Quality Improvement and Application increase of Framework Data in the Facility Area (시설물분야 기본지리정보 품질 향상 및 활용 증대 방안)

  • Ru Ji-Ho;Heo Min;Lee Hyun-Jik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.79-88
    • /
    • 2006
  • The facility area occupies approximately 50% of the topographic landmarks playing an important role in the utilization of geographical information in various fields, and requires more up-to-date information than the framework data of other areas. However, the expression mode in the 1:5000 digital map, which is a primitive data used for the preparation of framework data in the facility area, limits the description of the information on buildings, and its revision/renewal term of 5 years makes it far from up-to-date or accurate. Therefore, this study aimed to analyze the problems and quality deteriorating factors that may occur in establishing the framework data on the basis of existing establishment process of them in the facility area, and improve the qualify of the framework data in facility area by upgrading the methods of quality improvement. Expanding the information on attributes and improving the accuracy of locations were proposed as ways to increase the degree of utilization of the framework data in the facility area. And as the methods of expanding the information on attributes, it was proposed to improve the accuracy of the information on attributes for the framework data in the facility area using the information on attributes in the 1:1000 scale maps, and also to diversify the information on attributes in connection with the LMIS and AIS. To improve the accuracy of the locations, analyses were made with the potential problems that may occur in the establishment process through an experiment on the framework data in the facility area based on 1:1,000 digital map, and the results were used to present an improved, optimum process.

A Study on Large Scale Digital Mapping Using High Resolution Satellite Stereo Images (고해상도 위성영상을 이용한 대축척 수치지도 제작에 관한 연구)

  • Sung Chun Kyoung;Yun Hong Sic;Cho Jae Myoung;Cho Jung Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.277-284
    • /
    • 2004
  • The subject of this study is to apply experimentally In resolution stereo imagery of IKONOS to producing 1:50,000 scale maps for Munsan area in Paju, being near the Military Demarcation Line, is inaccessible for aerial photography. Ground control points were acquired from GPS surveying to perform geometric corrections on images. Digital maps were produced from IKONOS stereo imagery on the digital photographic workstation. From field investigation, RMS errors of the plane and vertical positions are estimated respectively at $\pm$1.706m and $\pm$1.231m, respectively. These plane and vertical accuracies are within the tolerance limits of those provided in the NGIS Digital Topographic Map Production Rules. Therefore this suggested method is recommended for producing the large scale digital maps of 'No flight' zone near the M.D.L.

A Study on the Generation of DEM for Flood Inundation Simulation using NGIS Digital Topographic Maps (NGIS 수치지형도를 이용한 효율적인 홍수범람모의용 지형자료 구축에 관한 연구)

  • Kwon, Oh-Jun;Kim, Kye-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.49-55
    • /
    • 2006
  • Nowadays, flood hazard maps have been generated to minimize the damages from the flooding. To generate such flood hazard maps, LiDAR data can be used as data source with higher data accuracy. LiDAR data, however, requires relatively higher cost and longer processing time. In this background, this study proposed DEM generation using NGIS digital topographic maps. For that, breaklines were processed to count directions of water flows. In addition, the river profile data, unique data source to represent real topography of the river area, were integrated to the breaklines to generate DEM. City of Kuri in Kyunggi Province was selected for this study and 1:1,000 and 1:5,000 topographic maps were integrated to process breaklines and river profile data were also linked to generate DEM. The generated DEM showed relatively lower vertical accuracy from mixing 1:1,000 and 1:5,000 topographic maps since 1:1,000 topographic maps were not available for some portion of the area. However, the DEM generated demonstrated reasonable accuracy and resolution for flood map generation as well as higher cost saving effects. On the contrary, for more efficient utilization of NGIS topographic maps, periodic map updating needs to be made including technical consideration in building breaklines and applying interpolation methods.

  • PDF

Application of CCD Image by Direct Georeferencing (Direct Georeferencing에 의한 CCD 영상의 적용기법)

  • Song Youn Kyung;Park Woon Yong;Park Hong Gi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.1
    • /
    • pp.77-88
    • /
    • 2005
  • Direct Georeferencing (DG) is based on the direct measurement of the projection centers and rotation angle of sensor through loading the GPS and INS in aircraft. The methods can offer us to acquire the exterior orientation parameters with only minimum GCPs, even the ground control process could be completely skipped. In this study, a CCD camera is simultaneously used in GPS/INS, and acquired CCD image through Direct Georeferencing produce digital orthoimage. In this process, methods of combining sensor and digital orthoimage are examined and estimated. For the comparison of the positioning accuracy digital orthoimage through Direct Georeferencing, GCPs determined by GPS surveying are used. Two digital orthoimage are produced; one with a few GCP and the other without them. The produced maps can be used to correct or revised 1:1,000 or 1:5,000 scale maps accordingly.

The Selection Methodology of Road Network Data for Generalization of Digital Topographic Map (수치지형도 일반화를 위한 도로 네트워크 데이터의 선택 기법 연구)

  • Park, Woo Jin;Lee, Young Min;Yu, Ki Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.3
    • /
    • pp.229-238
    • /
    • 2013
  • Development of methodologies to generate the small scale map from the large scale map using map generalization has huge importance in management of the digital topographic map, such as producing and updating maps. In this study, the selection methodology of map generalization for the road network data in digital topographic map is investigated and evaluated. The existing maps with 1:5,000 and 1:25,000 scales are compared and the criteria for selection of the road network data, which are the number of objects and the relative importance of road network, are analyzed by using the T$\ddot{o}$pfer's radical law and Logit model. The selection model derived from the analysis result is applied to the test data, and the road network data of 1:18,000 and 1:72,000 scales from the digital topographic map of 1:5,000 scale are generated. The generalized results showed that the road objects with relatively high importance are selected appropriately according to the target scale levels after the qualitative and quantitative evaluations.

A Feasibility Study for Mapping Using The KOMPSAT-2 Stereo Imagery (아리랑위성 2호 입체영상을 이용한 지도제작 가능성 연구)

  • Lee, Kwang-Jae;Kim, Youn-Soo;Seo, Hyun-Duck
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.197-210
    • /
    • 2012
  • The KOrea Multi-Purpose SATellite(KOMPSAT)-2 has a capability to provide a cross-track stereo imagery using two different orbits for generating various spatial information. However, in order to fully realize the potential of the KOMPSAT-2 stereo imagery in terms of mapping, various tests are necessary. The purpose of this study is to evaluate the possibility of mapping using the KOMPSAT-2 stereo imagery. For this, digital plotting was conducted based on the stereoscopic images. Also the Digital Elevation Model(DEM) and an ortho-image were generated using digital plotting results. An accuracy of digital plotting, DEM, and ortho-image were evaluated by comparing with the existing data. Consequently, we found that horizontal and vertical error of the modeling results based on the Rational Polynomial Coefficient(RPC) was less than 1.5 meters compared with the Global Positioning System(GPS) survey results. The maximum difference of vertical direction between the plotted results in this study and the existing digital map on the scale of 1/5,000 was more than 5 meters according as the topographical characteristics. Although there were some irregular parallax on the images, we realized that it was possible to interpret and plot at least seventy percent of the layer which was required the digital map on the scale of 1/5,000. Also an accuracy of DEM, which was generated based on the digital plotting, was compared with the existing LiDAR DEM. We found that the ortho-images, which were generated using the extracted DEM in this study, sufficiently satisfied with the requirement of the geometric accuracy for an ortho-image map on the scale of 1/5,000.

A Study on the Generation of Three Dimensional Orthophoto Map from Aerial Photograph by Digital Photogrammetry (수치사진측량 기법을 이용한 항공사진의 정사투영사진 지도 생성에 관한 연구)

  • 조재호;윤종성
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.203-211
    • /
    • 1998
  • A traditional method to produce three dimensional orthophoto map has been studied by digital photogrammetry which decides a height by digitally searching conjugate points on the stereo image. Many researches in digital photogrammetric field are still in progress to determine conjugate points automatically. In this study, we analyze the effect of accuracy of area-based image matching with changing eight types of target area size using four types of image pyramid. The result of image matching to each method compared with 1/5,000 digital mapping data. We decided a optimal size of target area on a percentage of image matching. Digital elevation model is generated by matching results and bundle method. As a result, three dimensional orthophoto map is made in terms of digital elevation model and orthophoto.

  • PDF

Analysis of Position Accuracy of Topography using LiDAR Data (LiDAR 데이터를 이용한 지형지물의 위치정확도 분석)

  • Kim, Yong-Suk;Kim, Seong-Cheol
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.3
    • /
    • pp.270-278
    • /
    • 2008
  • This study : An analysis of position accuracy of topography according to using LiDAR data, aerial photo and digital map for a study area was conducted. The study area was selected in Hadan area, Sahagu, Busan aerial LiDAR data and aerial photo in the scales of 1:20,000, which are high tech surveying ways were used. The final digital orthoimage according to orientation process for each image and image resampling was producted. Using it, a checkpoint was chosen, information about the checkpoints selected was extracted, a coordinate of Horizontal Position through the screen digitizing was also extracted. Both the coordinates of LiDAR data and aerial photo using digital map in the scales of 1:20,000 announced to the public from NGII(National Geographic Information Institute) were gradually compared and analyzed. Based on the digital map, as a result of being both compared and analyzed, it has shown to us that horizontal position of aerial photo is more accurate than that of aerial LiDAR surveying (RMSE-building x:24cm, y:26cm).

A Study on Application of PC Based Digital Photogrammetric System - Focusing on Producing Digital Map, DEM and Orthophoto - (PC 기반 수치사진측량시스템의 활용방안에 관한 연구 - 수치지도, DEM, 정사영상 제작을 중심으로-)

  • Park Byung Uk;Seo Sang Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.303-312
    • /
    • 2005
  • Digital map, DEM and orthophoto were produced by using PC based digital photogrammetric system and aerial photo images that were obtained with scale of 1/5,000 and scanning density of 1200dpi and 600dpi, and the accuracies of these outputs were evaluated by various methods. Non-skilled operator produced digital map with PC based digital photogrammetric system and aerial photo images scanned by 1200dpi. The results showed that it was impossible to insert contour lines, but the rest elements could be drawn with the accuracy of 1/1,000. In automatic generation of DEM, scanning density of aerial photo and grid interval of DEM didn't affect the accuracy of DEM. In production of orthophoto, we could know that the larger grid interval of DEM, the lower accuracy of orthophoto, but scanning density of original image had more effect on quality of orthophoto. By the way, accuracy comparison between orthophoto and digital map with same check points showed that orthophoto was more accurate than digital map, and orthophoto could be used in more diverse areas. Hereafter in civilian part, aerial photo image and PC based digital photogrammetric system could make practical application of data correction and update in GIS.