• Title/Summary/Keyword: 1/4 Car Suspension Simulator

Search Result 4, Processing Time 0.017 seconds

Position Control of a 1/4 Car Suspension Simulator using a Feedback Linearization Controller (피드백 선형화 제어기를 사용한 1/4 차량 현가장치 시뮬레이터의 위치 제어)

  • Kim, T.H.;Lee, I.Y.
    • Journal of Drive and Control
    • /
    • v.9 no.3
    • /
    • pp.8-15
    • /
    • 2012
  • In the study, a control strategy using a feedback linearization compensator and a disturbance observer was suggested and applied to a hydraulic control system for a vehicle suspension simulator. Although the hydraulic system has comparatively big external loads composed by constant and varying loads, it is ascertained that excellent control performances are obtained with the suggested control strategy.

1/4 Car Vibration Simulation Using An Empirical MR Damper Model (실험적 MR댐퍼 모델을 사용한 1/4차량 진동 시뮬레이션)

  • Baek, Woon-Kyung;Yang, Bo-Suk;Lee, Jong-Seok;Kang, Tae-Ho;Ryu, Sung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.638-643
    • /
    • 2005
  • This study is about a semi-active quarter car simulation method including a MR(magneto-rheological) damper. The MR damper was modeled as Spencer model that can capture nonlinear and hysteretic behavior. The parameters of the Spencer model were extracted from a random excitation test and optimum treatment of the test data. Then, a suspension control algorithm based on Sky-hook theory was applied for the quarter car simulation. Also, an experiment was dong using a quarter car simulator to confirm the simulation results with the Spencer MR damper model

  • PDF

1/4 Car Vibration Simulation Using an Empirical MR Damper Model (실험적 MR댐퍼 모델을 사용한 1/4 차량 진동 시뮬레이션)

  • Yang, Bo-Suk;Lee, Jong-Seok;Kang, Tae-Ho;Ryu, Sung-Won;Baek, Woon-Kyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1016-1022
    • /
    • 2005
  • This study is about a semi-active quarter car simulation method including a MR(magneto-rheological) damper. The MR damper was modeled as Spencer model that can capture nonlinear and hysteretic behavior. The parameters of the Spencer model were extracted from a random excitation test and optimum treatment of the test data. Then, a suspension control algorithm based on Sky-hook theory was applied for the quarter car simulation. Also, an experiment was done using a quarter car simulator to confirm the simulation results with the Spencer MR damper model.

Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension Systems: Implementation and Experiment (반능동 현가시스템용 자기동조 게인조절형 스카이훅 제어기의 구현 및 실험)

  • Hong, Kyung-Tae;Huh, Chang-Do;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.199-207
    • /
    • 2002
  • In this paper, a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype is discussed. Experimental results using a 1/4-ear simulator are discussed. Also, a suspension ECU prototype targeting real implementation is provided.