• Title/Summary/Keyword: 1/3 Octave analysis

Search Result 35, Processing Time 0.023 seconds

Analysis of Dependence on Wind Speed and Ship Traffic of Underwater Ambient Noise at Shallow Sea Surrounding the Korean Peninsula (한반도 주변해역 수중배경소음의 풍속과 선박분포에 따른 의존성 분석)

  • 최복경;김봉채;김철수;김병남
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.233-241
    • /
    • 2003
  • It is statistically analyzed the underwater ambient noise measured at 13 sites less than 200 m deep in the shallow water surrounding the Korean Peninsula for 9 yews from 1990 to 1998 in various environmental conditions. Frequency spectra were obtained with the 1/3-octave band center frequencies from 25㎐ to 20 ㎑. The analyzed shallow water noise spectra were some different from the deep water blown as the Wenz spectra. We could know that the ambient noise level shows higher than it in same condition by effect of various ship activity and the coastal noise, surface waves, and so on. As a result, we produced the coastal ambient noise spectra curve based on these results in shore of the Korea Peninsula.

A Study on Development of the Prediction Model Related to the Sound Pressure in Terms of Frequencies, Using the Pass-by and NCPX Method (Pass-by계측과 NCPX계측에 의한 주파수 별 음압 예측 모델 개발에 관한 연구)

  • Kim, Do Wan;Mun, Sungho;An, Deok Soon;Son, Hyeon Jang
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.79-91
    • /
    • 2013
  • PURPOSES : The methods of measuring the sound from the noise source are Pass-by method and NCPX (Noble Close Proximity) method. These measuring methods were used to determine the linkage of TAPL (Total Acoustic Pressure Level) and SPL (Sound Pressure Level) in terms of frequencies. METHODS : The frequency analysis methods are DFT (Discrete Fourier Transform) and FFT (Fast Fourier Transform), CPB (Constant Percentage Bandwidth). The CPB analysis was used in this study, based on the 1/3 octave band option configured for the frequency analysis. Furthermore, the regression analysis was used at the condition related to the sound attenuation effect. The MPE (Mean Percentage Error) and RMSE (Root Mean Squared Error) were utilized for calculating the error. RESULTS : From the results of the CPB frequency analysis, the predicted SPL along the frequency has 99.1% maximum precision with the measured SPL, resulting in roughly 1 dB(A) error. The TAPL results have precision by 99.37% with the measured TAPL. The predicted TAPL results at this study by using the SPL prediction model along the frequency have the maximum precision of 98.37% with the vehicle velocity. CONCLUSIONS : The Predicted SPL model along the frequency and the TAPL result by using the predicted SPL model have a high level of accuracy through this study. But the vehicle velocity-TAPL prediction model from the previous study by using the log regression analysis cannot be consistent with the TAPL result by using the predicted SPL model.

Interior Noise and Low Frequency Noise Characteristics of Busan Metro Line 3 Noise (부산도시철도 3호선 실내소음 및 저주파 소음 특성)

  • Hong, Do-Kwan;Jeong, Jae-Boo;Jung, Seung-Wook;Gang, Hyun-Wook;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1113-1120
    • /
    • 2012
  • This paper deals with the analysis of interior noise and low frequency noise characteristic for the Busan citizens to use public transport, Busan Metro Line 3. The interior noise evaluation index, articulation index(AI) is evaluated the lower value about average 22 % in a whole range, this is difficult to have a conversation. Also, noise criteria(NC) curve is partially evaluated as NC-65 below 2000 Hz, space type is evaluated as factories. Another of interior noise evaluation index, preferred speech interference level(PSIL) is evaluated the upper value about average 66 dB(A) in a whole range, this is evaluated to be interrupted. In the case of low frequency noise(20~200 Hz), the measurement of low frequency noise is assessed largely beyond noise criteria of ISO 226. The low frequency noise should be reduced because low frequency noise affects on psychological stress and displeasure although low frequency noise is not recognized by auditory sense. The low frequency noise criteria and guideline will be enacted from now on in Korea.

Prediction of Non-cavitation Noise from Large Scale Marine Propeller (수치해석을 통한 대형 선박용 프로펠러의 비공동소음 예측)

  • Ryu, Ki-Wahn;Lee, Jong-Yeol;Kim, Bong-Ki;Byun, Jeong-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.2
    • /
    • pp.75-82
    • /
    • 2015
  • Noises from the large scale marine propeller are calculated numerically on non-cavitation condition. The hydrodynamic analysis is carried out by potential based panel method with time marching free wake approach. The distribution of hydrodynamic loads on the propeller surface and noise signals are obtained using the unsteady Bernoulli's equation and the Farasssat's formula respectively. It turns out that the noise signal at the narrow band shows strong peak at the blade passage frequency, and the peak value at the 1/3 octave band also shows the same trend. Noise signals and directivity patterns for both the thickness and the loading noise are compared with each other. The directivity pattern for the loading noise shows minor lobe at the backward side of the rotating disc plane.

A Study on Contribution Analysis using Operational Transfer Path Analysis based on the Correlation between Subjective Evaluation and Zwicker's Sound Quality Index for Sound Quality of Forklifts (지게차의 주관적 음질평가와 Zwicker 음질지수의 상관관계 및 전달경로분석법(OTPA)을 활용한 음질 기여도 분석)

  • Kim, Beom Soo;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.19-25
    • /
    • 2016
  • Recently, drivers have begun to regard comfort in the cabin as one of the most important factors in construction equipment like forklifts. Accordingly, it has become more important to design a forklift cabin with a better sound quality as well as lower sound level, which can make a driver more comfortable. In this paper, the correlation between subjective evaluation and Zwicker's sound quality index was analyzed through a blind test by a few workers in forklifts and other construction equipment in several countries. Correlation analysis showed that Loudness and Sharpness were ranked in sequence, and tendencies were different from country to country. Also, contribution analysis for Loudness and Sharpness using operational transfer path analysis (OTPA), which is widely used in the field of noise, vibration, and harshness (NVH), was performed. However, Loudness and Sharpness cannot be used with OTPA directly because there are no linear relationships between the sources and receivers. In this paper, both are calculated by applying the DIN 45631 method with a contribution rate (%) of 1/3 Octave Sound Pressure Level by OTPA method in addition to considering spectral masking.

A Survey on the Status of Noisy Working Environment in Manufacturing Industries (제조업 산업장의 소음 작업환경 실태에 관한 조사 연구)

  • Kim, Joon-Youn;Kim, Byung-Soo;Lee, Chae-Un;Jun, Jin-Ho;Lee, Jong-Tae;Kim, Jin-Ok
    • Journal of Preventive Medicine and Public Health
    • /
    • v.19 no.1 s.19
    • /
    • pp.16-30
    • /
    • 1986
  • In order to prepare the fundamental data for the improvement of noisy working environments and the effective hearing conservation program on workers exposed to industrial noise, the authors surveyed the working processes and evaluated the noise levels on 56 manufacturing industries in Pusan area from April to July in 1985. The results were summarized as follows : 1. The noise level was the highest in shipbuilding and repairing(95.6 dBA), and followed by steel rolling(94.0 dBA), manufacture of motor vehicles(93.1 dBA), manufacture of fishing nets(92.9 dBA), manufacture of testiles(92.5 dBA), iron and steel foundries(89.3 dBA), manufacture of metal products(89.1 dBA), preserving and processing of marine foods(87.0 dBA), manufacture of rubber products(85.3 dBA), manufacture of plywood(84.9 dBA) and manufacture of paints(84.5 dBA). 2. Among fifty surveyed working processes, the noise level of twenty-one processes (42%) exceeded the threshold limit value for 8 hours per day. 3. As the allowable exposure times by governmental threshold limit values to industrial noise level(dBA), cocking of shipbuilding and repairing and plating(CGL) of steel rolling were the shortest(30 minutes), and followed by assembling(rivet) of manufacture of motor vehicles(1 hour) weaving of manufacture of textiles and shot, machine, pipe laying of shipbuilding and repairing(2 hours). 4. By the result of octave band analysis on noisy working processes in excess of 90 dBA, the sound level was the highest at 2,000 Hz or 4,000 Hz. 5. It was recognized that the measurement of overall sound pressure level was also effective as octave band analysis in evaluating the industrial noise.

  • PDF

The Analysis of Wideband Microstrip Slot Antenna with Cross-shaped Feedline (십자형 급전선을 갖는 광대역 마이크로스트립 슬롯 안테나의 특성 분석)

  • Jang, Yong-Ung;Han, Seok-Jin;Sin, Ho-Seop;Kim, Myeong-Gi;Park, Ik-Mo;Sin, Cheol-Je
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.3
    • /
    • pp.35-42
    • /
    • 2000
  • A cross-shaped microstripline-fed printed slot antenna having wide bandwidth Is presented in this paper. The proposed antenna is analyzed by using the Finite-Difference Time-Domain (FDTD) method. It was found that the bandwidth of the antenna depends highly on the length of the horizontal and vertical feedline as well as the offset position of the feedline. The maximum bandwidth of this antenna is from 1.975 GHz to 4.725 GHz, which is approximately 1.3 octave, for the VSWR $\leq$ 2. Experimental data for the return loss and the radiation pattern of the antenna are also presented. and they are in good agreement with the FDTD results.e FDTD results.

  • PDF

Clustering and classification of residential noise sources in apartment buildings based on machine learning using spectral and temporal characteristics (주파수 및 시간 특성을 활용한 머신러닝 기반 공동주택 주거소음의 군집화 및 분류)

  • Jeong-hun Kim;Song-mi Lee;Su-hong Kim;Eun-sung Song;Jong-kwan Ryu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.603-616
    • /
    • 2023
  • In this study, machine learning-based clustering and classification of residential noise in apartment buildings was conducted using frequency and temporal characteristics. First, a residential noise source dataset was constructed . The residential noise source dataset was consisted of floor impact, airborne, plumbing and equipment noise, environmental, and construction noise. The clustering of residential noise was performed by K-Means clustering method. For frequency characteristics, Leq and Lmax values were derived for 1/1 and 1/3 octave band for each sound source. For temporal characteristics, Leq values were derived at every 6 ms through sound pressure level analysis for 5 s. The number of k in K-Means clustering method was determined through the silhouette coefficient and elbow method. The clustering of residential noise source by frequency characteristic resulted in three clusters for both Leq and Lmax analysis. Temporal characteristic clustered residential noise source into 9 clusters for Leq and 11 clusters for Lmax. Clustering by frequency characteristic clustered according to the proportion of low frequency band. Then, to utilize the clustering results, the residential noise source was classified using three kinds of machine learning. The results of the residential noise classification showed the highest accuracy and f1-score for data labeled with Leq values in 1/3 octave bands, and the highest accuracy and f1-score for classifying residential noise sources with an Artificial Neural Network (ANN) model using both frequency and temporal features, with 93 % accuracy and 92 % f1-score.

Study on the Noise Characteristics of Bridge Deck Pavements in Seoul Inner Ring Road (서울시 내부순환도로 교면포장 형식에 따른 소음특성 연구)

  • Lee, Sang-Yum;Jin, Jung-Hoon;Mun, Sung-Ho;Moon, Hak-Ryong
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.19-28
    • /
    • 2012
  • A measuring technique for tire-pavement interaction noise that uses a proposed noble close proximity(NCPX) method, which has been proofed in terms of the reliability and consistency of interaction noise measurement through several researches, equipped with surface microphones has been adopted in order to perform bridge deck pavement noise evaluations on four different pavement surfaces. Through field testing measurement of bridge deck pavement in Seoul inner ring road, the appropriate noise-measuring procedures have been used for evaluating the noise characteristics of four different surfaces. Measuring results show that tire-pavement noise levels vary depending on the surface types and vehicle speeds. Furthermore, the different characteristics of tire-pavement interaction noise can be found before and after the new surface construction of bridge deck pavements in terms of the 1/3 octave band analysis of vehicle speed.

Analysis of Vehicle Noise Effect by Microphone Position and Road Geometry (도로 기하구조에 따른 차량 Microphone 위치별 소음 영향 분석)

  • Moon, Hak Ryong;Han, Dae Cheol;Kang, Won Pyoung
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.75-83
    • /
    • 2013
  • PURPOSES: The purpose of study is to understand the characteristic of driving noise from the front and rear tire for effective active noise cancellation application. METHODS : As literature review, noise measurement methods were reviewed. Noise measurement conducted at three kind of section by road slope using CPX(Close Proximity Method). Noise data was compared by total sound pressure level and 1/3 octave band frequency sound pressure level. Also, each section was compared by T-test using SPSS. RESULTS : In the case of the uphill section, it was shown that the sound pressure level of the front tire at Sugwang-Ri and Sinchon-RI sections was higher than that of the rear tire in low and high frequency band. In the case of high slope section of Sangsaek-Ri, the sound pressure level of the front tire was higher than that of the rear tire in high frequency. Also, in the case of the downhill section, it was shown that the sound pressure level of the front tire at Sugwang-Ri and Sinchon-RI sections was higher than that of the rear tire in low frequency band. However, the sound pressure levels of both the front and rear tires were approximately the same in the high slope section of Sangsaek-Ri. The result of T-test showed that total sound pressures of the front and rear tires were not different from each other in the case of high slope and high speed. CONCLUSIONS: Road slope was not an important variable for effective active noise cancellation.