• Title/Summary/Keyword: 1/1,000 Digital Map

Search Result 263, Processing Time 0.03 seconds

Digital Mapping Based on Digital Ortho Images (수치정사투영영상을 이용한 수치지도제작)

  • 이재기;박경식
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • In the recent day, the necessity and the effective usage are increased rapidly, and it is applied in many other fields as well as in the field of ortho-photo map. In this study, we extract each objects on the aerial image and automatically classify graphic information to produce digital map using only digital ortho-image without particular drawing devices for producing digital map. For this purpose, we have applied a lot of the image processing techniques and fuzzy theory, classified outline and lane of road and building, and had each layer according to each feature. Especially, in the case of the building, the outer vector lines extracted by pixel unit at the building were very complex, but we have developed the program to be expressed by I-dimensional linear type between building corners. In the result of this study, we could not extract and recognize all of the object on the image all together, but we have got the error within 50cm using semi-automatic technique. Therefore, this method will be used effectively in producing 1/5,000 digital map.

  • PDF

Application Study on the View Points Analysis for National Roads Route using Digital Elevation Data

  • Yeon, Sang-Ho;Hong, Ill-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.292-296
    • /
    • 2002
  • This study has been accomplished as a experimental study for field application of 3D Perspective Image Map creation using Digital Topographical Map and based on the Ortho-Projection Image which is generated from Satellite Overlay Images and the precise Relative Coordinates of longitude, latitude and altitude which is corrected by GCP(Ground Control Point). AS to Contour Lines Map which is created by Coordinate conversion of 1:5,000 Topographical Map, we firstly made Satellite Image Map to substitute for Digital Topographical Map through overlapping the original images on top of each Ortho-Projection Image created and checking the accuracy. In addition to 3D Image Map creation for 3D Terrain analysis of a target district, Slope Gradient Analysis, Aspect Analysis and Terrain Elevation Model generation, multidirectional 3D Image generation by DEM can be carried out through this study. This study is to develop a mapping technology with which we can generate 3D Satellite Images of a target district through the composition of Digital Maps and Facility Blueprint and arbitrarily create 3D Perspective Images of the target district from any view point.

  • PDF

Digital Plotting with KOMPSAT-1 EOC Stereo Images using Digital Photogrammetric Workstation

  • Jeong, Soo;Kim, Youn-Soo;Lee, Ho-Nam
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.25-33
    • /
    • 2002
  • In 1799, Korea has become a country that holds Earth observation satellite in orbit as they had succeeded in the launch of KOPMSAT-1, the first Korean Earth observation satellite for the practical purpose. For the wide application of the satellite imagery, various application techniques are required, and topographic mapping is essential technique for the application in various fields. Moreover, considering that the main mission of the KOMPSAT-1 is to provide the satellite imagery for the mapping of Korean peninsula, the topographic mapping using KOMPSAT-1 EOC imagery is very significant. In this paper, we showed the possibility of digital plotting using KOMPSAT-1 EOC stereo images to produce topographic map. For the purpose, we implemented experimental stereo plotting using digital photogrammetric workstation and analyzed the procedure. As a result of this paper, we showed that some elements consist in 1:25,000 scale map can be plotted from KOMPSAT-1 Stereo images.

Accuracy Comparison as World Geodetic Datum Transformation of 1/1000 Digital Map (1/1,000 수치지형도의 세계측지계 변환에 따른 정확도 비교)

  • Yun, Seok-Jin;Park, Joung-Hyun;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.169-175
    • /
    • 2009
  • According as standard of measurement is changed to world geodetic system by surveying law revision, we need to transform previous 1/1,000 digital maps as a standards of world geodetic system. And, we should acquire standard strategy to minimize confusion and error by conversion of geodetic surveying standards. Thus, conversion of digital maps must be transformed efficiently and consistently according to notice of relevant standard. As common point, we have used 1/1,000 digital map and local geodetic system coordinates and world geodetic system coordinates that had been used in UIS business of Pusan city and, make a analysis of distortion quantity using KASM Trans Ver 2.2. As the result of distortion quantity calculation about all Pusan city, numbers of area that error is over 0.05m are 35 in case of X(N) and 43 in case of Y(E). Because some business section have especially much error, we divided into 3 areas, that was A,B,C, and analyzed. As a result of analysis, errors of more than 0.05m are occurred only 1 X(E) in the B area and 1 X(N) and 1 Y(E) in the C area. In conclusion, We think It is a good method that we consider a distortion quantity and divide a region, and transfer to world geodetic system for large area like Pusan city.

A Study on the Technique Develop for Perspective Image Generation and 3 Dimension Simulation in Jecheon (제천시 영상 조감도 생성 및 3차원 시뮬레이션 기술개발에 관한 연구)

  • 연상호;홍일화
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.45-51
    • /
    • 2003
  • Stereo bird's-eyes-view was prepared for 3-dimensional view of various forms of Jecheon city, and 3-dimensional simulation was applied to it so as to show it in moving pictures in spatial. In manufacturing stereo bird's-eyes-view, perspective technology was used in image-making technology, and the basic material images are prepared as fellows: used EOC Images from Arirang-1 satellite, created DEM whose error was optionally geometric corrected after drawn from the contour line of the map on a scale of l/5,000 manufactured by national geography institute as a national standard map, and classified road lines which were manufactured as a road layer vector file of a map on a scale of l/l,000 and then overlay it over the three dimensional image of target area. Especially for the connectivity with address system to be used in new address, an arterial road map on a scale of l/l,000 that had been manufactured to grant new address was used in maximum in road network structure data of city area in this study.

Analysis of Three Dimensional Positioning Accuracy of Vectorization Using UAV-Photogrammetry (무인항공사진측량을 이용한 벡터화의 3차원 위치정확도 분석)

  • Lee, Jae One;Kim, Doo Pyo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.525-533
    • /
    • 2019
  • There are two feature collection methods in digital mapping using the UAV (Unmanned Aerial Vehicle) Photogrammetry: vectorization and stereo plotting. In vectorization, planar information is extracted from orthomosaics and elevation value obtained from a DSM (Digital Surface Model) or a DEM (Digital Elevation Model). However, the exact determination of the positional accuracy of 3D features such as ground facilities and buildings is very ambiguous, because the accuracy of vectorizing results has been mainly analyzed using only check points placed on the ground. Thus, this study aims to review the possibility of 3D spatial information acquisition and digital map production of vectorization by analyzing the corner point coordinates of different layers as well as check points. To this end, images were taken by a Phantom 4 (DJI) with 3.6 cm of GSD (Ground Sample Distance) at altitude of 90 m. The outcomes indicate that the horizontal RMSE (Root Mean Square Error) of vectorization method is 0.045 cm, which was calculated from residuals at check point compared with those of the field survey results. It is therefore possible to produce a digital topographic (plane) map of 1:1,000 scale using ortho images. On the other hand, the three-dimensional accuracy of vectorization was 0.068~0.162 m in horizontal and 0.090~1.840 m in vertical RMSE. It is thus difficult to obtain 3D spatial information and 1:1,000 digital map production by using vectorization due to a large error in elevation.

Study on Application of Topographic Position Index for Prediction of the Landslide Occurrence (산사태 발생지 예측을 위한 Topographic Position Index의 적용성 연구)

  • Woo, Choong-Shik;Lee, Chang-Woo;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • The objective of the study is 10 know the relation of landslide occurrence with using TPI (Topographic Position Index) in the Pyungchang County. Total 659 landslide scars were detected from aerial photographs. To analyze TPI, 100m SN (Small-Neighborhood) TPI map, 500m LN (Large-Neighborhood) TPI map, and slope map were generated from the DEM (Digital Elevation Model) data which are made from 1 : 5,000 digital topographic map. 10 classes clustered by regular condition after overlapping each TPI maps and slope map. Through this process, we could make landform classification map. Because it is only to classify landform, 7 classes were finally regrouped by the slope angle information of landslide occurrence detected from aerial photography analysis. The accuracy of reclassified map is about 46%.

A Pilot Project on Producing Topographic Map Using Medium Resolution Satellite Image (중해상도 위성영상을 이용한 지도제작 시험연구)

  • 박희주;한상득;안기원;박병욱
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.373-383
    • /
    • 2001
  • This study conducted pilot mapping project to know the possibility of mapping with medium resolution satellite imageries. For this purpose, mapping experiments were conducted with each stereo model imageries of SPOT, KOMPSAT, and IRS- lC. And positional accuracy, analysis of detectable and describable features, and comparison with existing digital map were checked, possible mapping scale and cost analysis were conducted with these results. Regarding SPOT imagery, digital photogrammetric workstation was used for stereoplotting. Regarding KOMPSAT and IRS-lC imageries, because there were data format support problems. head-up digitizing was performed with ortho imageries rectified with DEMs generated by image matching. The results of experiments show that such features as wide road, river, coast line, etc are possible to detect and depict but many other features are not for SPOT, KOMPSAT, and IRS-lC imageries. On the aspect of mapping, therefore, SPOT is available for 1/50,000 topographic map revision, KOMPSAT and IRS-lC for 1/25.000 topographic map revision.

  • PDF

A Study on Feature Classification and Data Dictionary of Digital Map (수치지도 지형지물 분류체계 개선 및 자료사전에 관한 연구)

  • 조우석;이동구;윤영보
    • Spatial Information Research
    • /
    • v.10 no.3
    • /
    • pp.455-468
    • /
    • 2002
  • Toward the systematic and efficient management of national land, National Geography Institute(NGI, National mapping agency) has been producing national basemap in automated process since middle of 1980's. Under the National Geographic Information System(NGIS) Development Plan, NGI began to produce digital maps in the scales of 1:1,000, 1:5,000, 1:25,000 since 1995. However, those of digital maps that have been generated under NGIS Development Plan need to be modified and corrected due to lack of technology and experience in making digital maps. In this context, those digital maps generated are currently in great need for improving the data dictionary. It is fully appreciated in previous research that data dictionary will be a key element far users and generators of digital maps to rectify the existing problems in digital maps as well as to maximize the application of digital maps. In this paper, we analyzed existing problems in digital maps based on previous researches and interviews with engineers in different fields of geospatial engineering. And then, the existing data dictionary has been redefined and modified. In the line of modification process, a relational matrix was established fur each topographic feature defined in the existing feature classification system. This paper presents newly proposed data dictionary which conforms to newly defined feature classification system from previous research performed by NGI.

  • PDF

Updating Digital Map using Images from Airborne Digital Camera (항공디지털카메라 영상을 이용한 수치지도 갱신)

  • Hwang, Won-Soon;Kim, Kam-Rae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_2
    • /
    • pp.635-643
    • /
    • 2007
  • As the availability of images from Airborne Digital Camera with high resolution is expanded, a lot of concern are in the production and update of digital map. This study presents the method of updating the digital map at the scale of 1/1,000 using images from Aerial Digital Camera. Geometric correction was completed using GPS surveying data. For digital mapping, digital photogrammetric system was utilized to digitize buildings and roads. The absolute positional accuracy was evaluated using GPS surveying data and the relative positional accuracy was evaluated using the digital map produced by analytical mapping. The absolute positional accuracy was as follows: RMSE in X and Y were ${\pm}0.172m\;and\;{\pm}0.127m$, and average distance error was 0.208m. The relative positional accuracy was as follows: RMSE in X and Y were ${\pm}0.238m\;and\;{\pm}0.281m$, and average distance error was 0.337m. Accuracies of updating digital map using images from airborne Digital Camera were within allowable error established by NGII. Consequently, images from airborne Digital Camera can be used in various fields including the production of the national basic map and the GIS of local government.