• Title/Summary/Keyword: 1,3,4-Oxadiazole

Search Result 67, Processing Time 0.028 seconds

Preparation and Characteristics of Organic Electroluminescence Devices using Multilayer Structure with Carrier Transport Materials (다층막 구조를 이용한 유기 EL소자의 제작과 특성에 관한 연구)

  • Lee, Sang-Youn;Kim, Young-Kwan;Kim, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1563-1565
    • /
    • 1997
  • Electroluminescence(EL)devices based on organic thin layers have attracted lot of interests because of their possible application as large-area light-emitting display. One of the problems of such devices is lifetime of the cell, where the degradation of the cell is partially due to the crystalliyzation of organic layers. In large part, this problem can be solved by using a multilayer device structure prepared by vapor deposition technique. In this study, blue lightemitting multilayer organic electroluminescence devices were fabricated using Poly (9-vinyl-carbazole) (PVK) and 2-(4'-tert-butylpheny])-5-(4"-bis-phenyl)1,3,4-oxadiazole (PBD) as hole trasport and electron transport material, respectively, where tris(8-hydroxyquinolinate) aluminum (Alq3) was used as a luminescenct material. A cell structure of glass substrate/indume-tin-oxide(ITO)/PVK/$Alq_3$/PBD/Mg:In was employed.

  • PDF

EFFECT OF SOLVENT POLARITY ON THE FLUORESCENCE QUENCHING OF ORGANIC LIQUID SCINTILLATORS BY ANILINE

  • Shailaja, M.K.;Hanagodimath, S.M.;Kadadevarmath, J.S.;Chikkur, G.C.
    • Journal of Photoscience
    • /
    • v.6 no.4
    • /
    • pp.159-163
    • /
    • 1999
  • The fluorescence quenching of 2-phenyl-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) and 1,4-di-[2-(5-phenyloxazolyl)]-benzene (POPOP) by aniline has been carried out in different solvent mixtures of dioxane and acetonitrile at room temperature. The quenching is found to be appreciable and a positive deviation from linearity was observed in the Stern-Volmer plot in all the solvent mixtures. Various rate constants for the quenching processes have been determined using a modified Stern-Volmer equation. From the positive deviations of linear Stern-Volmer plots and the dependence of rate constants on the polarity of the solvents, it has been concluded that both static and dynamic quenching processes are responsible for the observed positive deviation in the Stern-Volmer plot.

  • PDF

Degradation effects of blue organic electroluminescence devices (청색 유기 EL 소자의 열화현상에 대한 연구)

  • Na, Sun-woong;Son, Chul-ho;Shin, Kyung;Lee, Young-jong;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.943-946
    • /
    • 2001
  • In this study, We have investigated degradation effects of blue organic electroluminescence devices that was consisted of TPD(N,N'-dyphenyl-N-N\`-bis(3-methyphenyl) as hole transport layer and Butyl-PBD (2- (4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole)-as emission layer and electron transport layer. We have studied characteristics of brightness and current density about blue OEL that was degradated layer. Two kinds of samples that were fabricated each continuous and non-continuous method was used.

  • PDF

All Non-Dopant RGB Composing White Organic Light-Emitting Diodes

  • Yeh, Shi-Jay;Chen, Hung-Yang;Wu, Min-Fei;Chan, Li-Hsin;Chiang, Chih-Long;Yeh, Hsiu-Chih;Chen, Chin-Ti;Lee, Jiun-Haw
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1583-1586
    • /
    • 2006
  • All non-dopant white organic light-emitting diodes (WOLEDs) have been realized by using solid state highly fluorescent red bis(4-(N-(1- naphthyl)phenylamino)phenyl)fumaronitrile (NPAFN) and amorphous bipolar blue light-emitting 2-(4- diphenylamino)phenyl-5-(4-triphenylsilyl)phenyl- 1,3,4-oxadiazole (TPAOXD), together with well known green fluorophore tris(8- hydroxyquinolinato)aluminum $(Alq_3)$. The fabrication of multilayer WOLEDs did not involve the hard-tocontrol doping process. Two WOLEDs, Device I and II, different in layer thickness of $Alq_3$, 30 and 15 nm, respectively, emitted strong electroluminescence (EL) as intense as $25,000\;cd/m^2$. For practical solid state lighting application, EL intensity exceeding $1,000\;cd/m^2$ was achieved at current density of $18-19\;mA/cm^2$ or driving voltage of 6.5-8 V and the devices exhibited external quantum efficiency $({\eta}_{ext})$ of $2.6{\sim}2.9%$ corresponding to power efficiency $({\eta}_P)$ of $2.1{\sim}2.3\;lm/W$ at the required brightness.

  • PDF

A Tone Correction Halftone Method Based on Response Characteristic of Digital Printer (디지털 프린터의 출려특성기반 톤 보정 망점화)

  • 신지현
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.15 no.1
    • /
    • pp.71-83
    • /
    • 1997
  • In recent years, various kinds of organic photoreceptors have been used for copy machines based on electrophotography. Most of them are constructed into layered devices in which a photogeneration layer is separated from a charge transport layer. They are usually used with application of negative charges. Organic pigment have received considerable attention with phthalocyanine, squaraine, and azo compounds being used to construct zerograpgic photoreceptors with enhanced long wavelength sensitivity, residual potential and zerograpgic gain of squaraine photoconductor were measured from the photoinduced discharge curve. Most of synthesized squaraine derivative couldn`t use for CGM(charge generation material), but it knew that a part of one was able to use it within the possibility. A few appliance is used it know about dependence on CTM(charge transport material) of squaraine derivative. It could know that experiment`s result is 2.5-bis(4-N-N`-diethylaminophenyl)-1,3,4-oxadiazole(OXD) is the bestproduct.

  • PDF

The study on Red device using PBD as a Hole Blocking Layer (PBD를 Hole Blocking Layer로 이용한 적색발광의 EL 소자 제작에 관한 연구)

  • Kang, Min-Woong;Kim, Jong-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.499-501
    • /
    • 2002
  • 본 연구에서는 ETL층으로 널리 알려져 있는 PBD(2-(4-biphenyl)-5-(4-tert-butylphenyl) -1.3,4oxadiazole)를 HBL(Hole-blocking layer) 물질로 이용 하고 Nile red를 사용하여 적색 발광의 EL(electroluminescence) 소자를 제작 평가하였다. 일반적인 유기 EL 소자의 구조인 Anode/HTL(Hole Transport Layer)/ETL(Electron Transport Layer)/Cathode로 이루어져 있다. 여기에 HTL과 ETL사이에 HBL를 추가하여 EL 소자의 성능을 향상 시킬 수 있으면, 이러한 구조의 최종 소자를 제작 EML(emitting layer; Nile red)의 두께 및 임계전압을 달리 하여 소자 의 특성을 평가 연구 하였다.

  • PDF

Study on The lonzation Potential, Electron Affinity and Electrochemical Property of PBO and PVK using Cyclic Voltammetry and Constant Current Potentiometry (순환전압전류법과 일정전류전위차법을 이용한 PBD와 PVK의 이온화에너지, 전자친화도 및 전기화학적 특성에 관한 연구)

  • 형경우;최돈수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1273-1277
    • /
    • 2003
  • The effects of molecular structure on the redox properties are explored by the cyclic voltammetry, constant current potentiometry and spectroscopy using the thin films of organic electroluminescence materials of Poly(N-vinylcarbazole); PVK and 2- (4'-tert-butylphenyl) -5-(4"-bisphenyl) -1,3,4-oxadiazole; PBD. The UV/visible absorption maxima and band gap (E$\_$g/) show at 310nm (4.00eV) and 368nm (3.37eV) for FBD, 344nm (3.60eV) and 356nm (3.48eV) for PVK, respectively. The measured electrochemical ionization potential (IP) and electron affinity (EA) of these materials we 5.87 and 2.82eV for PBD, 5.80 and 3.17eV for PVK, respectively. The electrical band gaps are 3.05eV for PBD and 2.78eV for PVK, respectively. The electrical hole gap and electron gap with respect to the first rising potentials and the inflection potentials are obtained to be 0.39V and 0.41V for PBD, 0.25V and 0.28V for FVK, respectively.

Fabrication of the Electroluminescence Devices with Al electrode deposited by DC sputtering (DC 스퍼터링 증착에 의한 AI 전극을 갖는 전계발광소자 제작)

  • 윤석범
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.376-382
    • /
    • 2000
  • We successfully fabricated OLED(Organic Light Emitting Diodes) with Al cathodes electrode deposited by the DC magnetron sputtering. The effects of a controlled Al cathode layer of an Indium Tin Oxide (ITO)/blended single polymer layer (PVK Bu:PBD:dye)/Al light emitting diodes are described. The PVK (Poly(N-vinylcarbazole)) and Bu-PBD (2-(4-biphenyl-phenyl)-1,3,4-oxadiazole) are used hole transport polymer and electron transport molecule respectively. We found that both current injection and electroluminescence output are significantly different with a variable DC sputtering power. The difference is believed to be due to the influence near the blended polymer layer/cathode interface that results from the DC power and H$\sub$2//O in a chamber. And DC sputtering deposition is an effective way to fabricate Al electrodes with pronounced orientational characteristics without damage occurring to metal-organic interface during the sputtering deposition.

  • PDF

Characteristics of OLED by co-evaporation methode (Co-evaporation methode에 의한 OLED의 발광 특성)

  • Lee, Jung-Tae;Na, Sun-Woong;Shin, Kyung;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1046-1049
    • /
    • 2002
  • In this study, We fabricated Organic Electroluminescence device, in order to improve the efficiency of Blue OLED in the full-color OLED. We made two sample. Sample A is that We used TPD(N,N‘-bis(3-methylphenyl)-N,N'-diphenylbenzidine} as hole transport layer(HTL), and Butyl-PBD(2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole) as emitting material layer(EML) and Alq3(8-Hydroxyquinoline, aluminum} as electron transport layer(ETL). Sample B is that we used TPD(N, N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine} as HTL and co-evaporated Butyl-PBD and Alq3 as EML. We investigated the characteristic of brightness and current-:voltage. The sample B that co-evaporated Butyl-PBD and Alq3 as EML improved characteristic of brightness and current-voltage than sample A. Maximum luminescence of sample B is $310cd/m^2$ and threshold voltage is 7V.

  • PDF