• Title/Summary/Keyword: 1,2-Dibromoethane

Search Result 9, Processing Time 0.027 seconds

Genetic Toxicity Test of 1,2-Dibromoethane by Ames, Micronucleus, Comet Assays and Microarray Analysis

  • Kim, Ki-Y.;Kim, Ji-H.;Kwon, Kyoung-J.;Go, Seo-Y.;Min, Kyung-N.;Lee, Woo-S.;Park, Sue-N.;Shee, Yhun-Y.
    • Biomolecules & Therapeutics
    • /
    • v.14 no.4
    • /
    • pp.246-252
    • /
    • 2006
  • 1,2-Dibromoethane(DBE) has been widely used as a soil fumigant, an additive to leaded gasoline and an industrial solvent. In this study, we have carried out in vitro genetic toxicity test of 1,2-dibromoethane and microarray analysis of differentially expressed genes in response to 1,2-dibromoethane. 1,2-Dibromoethane showed mutations in base substitution strain TA1535 both with and without exogenous metabolic activation. 1,2-Dibromoethane showed mutations in frame shift TA98 both with and without exogenous metabolic activation. 1,2-Dibromoethane showed DNA damage based on single cell gel/comet assay in L5178Y cells both with and without exogenous metabolic activation. 1,2-Dibromoethane increased micronuclei in CRO cells both with and without exogenous metabolic activation. Microarray analysis of gene expression profiles in L5178Y cells in response to 1,2-dibromoethane selected differentially expressed 241 genes that would be candidate biomarkers of genetic toxic action of 1,2-dibromoethane.

Syntheses of New Lactones Containing Phenyl or Methyl Groups (페닐기 및 메틸기를 포함하는 새로운 lactone의 합성)

  • Chang, Seung Hyun;Moon, Sang Chil;Kim, Hak Hee;Lee, Kap Duk;Chung, Kwang Bo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.842-845
    • /
    • 1998
  • Four new lactones and one dibenzo crown ether were synthesized by reaction of dihydroxy compound with oxalyl chloride and with ${\alpha}$,${\omega}$-dibromo compound, respectively. 5,6,11,12-Tetracarbonyl-2,2,3,3,8,8,9,9-octaphenyl-1,4,7,10-tetraoxacyclodode- cane(1), 5,6,11,12-tetracarbonyl-2,2,3,3,8,8,9,9-octamethyl-1,4,7,10-tetraoxacyclododecane(2), 7,8,15,16-tetracarbonyl-1,6,9,14-tetraoxacylclohexadecane(3), and 5,6,11,12-tetracarbonyl- 2,3,8,9- tetraphenyl-1,4,7,10-tetraoxacyclododecane(4) were prepared by reaction of oxalyl chloride with benzopinacol, pinacol, 2,2'-dihydroxybiphenyl and hydrobenzoin, respectively, in the presence of pyridine. Dibenzo-13-crown-4 (5) was obtained by reaction of catechol with 1,3-dibromopropane/1,2-dibromoethane.

  • PDF

The Crystal Structure of Dehydrated Fully $Ag^+$-Exchanged Zeolite A Successively Treated with Ethylene and Bromine Vapor

  • Jeong, Mi-Suk;Jang, Se-Bok;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.940-944
    • /
    • 1994
  • The crystal structure of an ethylene sorption complex of dehydrated $Ag_{12}-A $reacted with bromine vapor has determined by single-crystal X-ray diffraction techniques in the cubic space group of Pm3m at 22(l)$^{\circ}$C (a=12.180(2) ${\AA}$). The crystal was prepared by dehydration of $Ag_{12}$-A at 400 $^{\circ}$C and $2 {\times} l0^{-6}$ Torr for 2 days, followed by exposure to 200 Torr of ethylene gas at 24(l) $^{\circ}$C for 1 hr. After the ethylene gas was evacuated for 1 hr, the crystal was exposed to 180 Torr of bromine vapor at 24(l) $^{\circ}$C for 1.5 h. The structure was refined to the final error indices, $R_1=0.066\;and\;R_2$ (weighted)=0.055, using 137 independent reflections for which I>3${\sigma}$I. About 55% of the sodalite unit contain two 6-ring $Ag^+$ ions and the remaining 45% contain $Ag_6$ molecules complexed to 2 $Ag^+$ ions at 6-ring sites to give $(Ag^+)_2(Ag_6).$ Upon sorption of ethylene, 4.75 ethylene molecules were sorbed per unit cell and of these, only 1.25 ethylene molecules were brominated by treatment of dibromine because of the limitation of the available space for the reaction products in the large cavity. In the large cavity, each of 3.5 $Ag^+$ ions forms a lateral ${\pi}$ complex with an ethylene molecule. About 2.5 8-ring $Ag^+$ ions per unit cell interact with 1.25 1,2-dibromoethane and each of ca. 1.25 6-ring $Ag^+$ ions also interacts with one of bromine atoms of 1,2-dibromoethane. Each bromine atom approaches a carbon atom with C-Br(l)=2.07(20) ${\AA}$ and C-Br(2)=2.07(10) ${\AA}$, respectively.

Temporal and Spatial Distribution of VOCs in Seawater of Kwangyang Bay (광양만 해수의 휘발성 유기화합물에 대한 시.공간적 분포)

  • 주현수;이우범;박종천
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.4
    • /
    • pp.513-519
    • /
    • 1999
  • Volatile organic compounds (VOCs) were analyzed on the seawater from 17 stations in Kwangyang Bay throughtout the year. We could not detect 10 VOCs; methylene chloride, tetrachloromethane, 1, 1, 1-trichloroethane, trichloroethane, 1, 1, 1, 2-tetrachloroethane, trichloroethylene, bromoethane, dibromoethane, bromobenzene, 1-ethyl-3-methylbenzene. The other VOCs-chloroform, 1, 2-dichloroethane, ethylbenzene, benzene, toluene, m, p-xylene, methylethylketone, styrene, hexane-were detected with a little variance according to the sampling stations and the sampling seasons. The concentrations of chloroform (0.6 ~ 49.9 $\mu$g/1) and toluene (0.42 ~ 48.3 $\mu$g/1) were high and they were detected more frequently than the other detected VOCs. We also tried to seek the correlation between the physicochemical environmental factors and VOCs. Only toluene had the high correlation coefficient with the water temperature (r = -0.524) and with the pH (r = 0.319). Correlation between VOCs themselves showed some interesting results. The benzene had high correlation coefficient (r = 0.549 ~ 0.662) with three VOCs such as toluene, m, p-xylene, ethylbenzene. From these results it is suggested that VOCs might be discharged simultaneously in Kwangyang Bay.

  • PDF

BIOACTIVATION OF DIBROMOETHANE BY CONJUGATION WITH GLUTAHIONE

  • Kim, Dong-Hyun
    • Toxicological Research
    • /
    • v.7 no.2
    • /
    • pp.231-238
    • /
    • 1991
  • The pesticide and carcinogen ethylene dibromide(EDB) is metabolized both by cytosolic GSH S-transferase and by microsomal mixed function oxygenase. Cytochrome P-450 IIE1 appears to be major enzyme to metabolize EDB.EDB is activated to a mutagen by enzymatic conjugation with glutathione (GSH). Such activation is an exception to the general mode of detoxification via GSH S-transferase action. The primary DNA adduct (>95) is S-[2-(N7-guanyl)ethyl] GSH and a minor adduct is S-[2-(N7-guanyl)ethyl]cysteine, which is excreted in the urine and may serve as a biomarker of damage.

  • PDF

Synthesis of 2-(5,6-dimethoxy-l-indenyl)ethyl amine (2-(5,6-디메톡시-1-인데닐)에틸 아민의 합성)

  • 정원영;마은숙
    • YAKHAK HOEJI
    • /
    • v.47 no.1
    • /
    • pp.1-4
    • /
    • 2003
  • In order to search the new serotonin bioisoster, 2-(5,6-dimethoxy-l-indenyl)ethyl amine(1) was synthesized. 3,4-Dimethoxybenzaldehyde, as starting material, was condensed with malonic acid in the presence of pyridine and piperidine to form 3,4-dimethoxycinnamic acid(2). Compound 2 was performed catalytic hydrogenation with 10% Pd-C to give propanoic acid derivative 3, which was cyclized by Friedel-Crafts acylation to afford 5,6-dimethoxyindan-l-one(4). Compound 4 was reduced with NaBH$_4$ in ethanol to obtain l-indanol 5, and it was dehydrated to give 5,6-dimethoxy-l-indene(6). This compound was lithiated with 2.5M n-butyllithium and reacted with 1,2-dibromoethane to give 2-(5,6-dimethoxy-l-indenyl)ethyl bromide(7), and which was treated with anhydrous ammonia to synthesize compound 1.

Effect of Genotoxicity or Carcinogenecity Chemicals on the ROS Production (유전독성, 발암성 화학물질이 ROS 생성에 미치는 영향)

  • Go, Seo-Youn;Sheen, Yhun-Yhong
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • In the present study, ROS detection of L5178Y cells that were treated with twenty test compounds in order to find out hydrogen peroxide ($H_2O_2$) induction for genotoxicity and carcinogenic toxicity. Twenty test compounds were consist of four classes, such as genotoxic carcinogens, genotoxic noncarcinogens, nongenotoxic carcinogens, and nongenotoxic noncarcinogens. Genotoxic carcinogens are 1,2-dibromoethane, glycidol, melphalan, diethylstilbestrol and urethane. Genotoxic noncarcinogens are 8-hydroxyquinoline, emodin, acetonitrile and diallylphthalate, L-ascorbic acid. Nongenotoxic carcinogens are methyl carbamate, O-nitrotoluene, 1,4-dioxane, tetrachloroethylene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. And nongenotoxic noncarcinogens are D-mannitol, 1,2-dichlorobenzene, caprolactam, bisphenol A and chlorpheniramine maleate.

Studies on insecticidal activity and synthesis of Bis (trichlorophenoxy) ethane (Bis(trichlorophenoxy) ethane(BTPE)의 합성 및 살충효력에 관한 연구(I))

  • Kim C. S.;Kim H. W.;Kim M. Y.;Kang S. W.;Lee D. S.;Lee E. S.
    • Korean journal of applied entomology
    • /
    • v.4
    • /
    • pp.47-50
    • /
    • 1965
  • Many of the chlorophenol derivatives are widely used as insecticides, herbicides and plant growth regulators. The function and use of these chemicals would be different according to the number of chlorine and their chemical structures. It was reported in this article that 1) Bis(trichlorophenoxy) ethane was synthesized with 2 mol-trichlorophenol and 1 moi-dibromoethane in 2 moi-Sodium hydroxide alcohol solution, and 3) the insecticidal activity of Bis(trichlorophenoxy) ethane was compared with Phenkapton, Tedion V-18, BHC, and DDT, on Citrus red mite, Bombix mori (Silk worm), and Daikon leaf beetle(Phaedon brassicae) 3) The toxicity of Bis(2, 4, 5-trichlorophenoxy) ethane and Bis(2, 4, 5-trichlorophenoxy) ethane was studied on mice. The following results were obtained. 1) Yield of Bis(2, 4, 5-trichlorophenoxy) ethane, $50.06\%$, m.p. $157-159^{\circ}C$, and yield of Bis(2,4, 6-trichlorophenoxy) ethane, $32.60\%$, m.p. $162-163^{\circ}C$. 2) Insecticidal activity of Bis(2, 4, 5-trichlorophenoxy) ethane to Citrus red mite is stronger than that of Tedion V-18, and weaker than that of Phenkapton. 3) Insecticidal activity of Bis(2, 4, 5-trichlorophenoxy) ethane to Bombix mori is weaker than those of BHC and DDT. 4) Insecticidal activity of Bis(2. 4, 5-trichlorophenoxy) ethane to Daikon leaf beetle proved to be ineffective. 5) Five rams of Bis(2, 4, 5-trichlorophenoxy) ethane and Bis(2, 4, 6-trichlorophenoxy) ethane pet kg of body weight respectively were given to mice orally, and none of the mouse was killed by it after a period of 72 hours. Therefore it seems that there is almost no toxicity.

  • PDF