• 제목/요약/키워드: 1,2,3-triazole polymer

검색결과 7건 처리시간 0.027초

Synthesis and Electro-optical Properties of π-Conjugated Polymer Based on 10-Hexylphenothiazine and Aromatic 1,2,4-Triazole

  • Choi, Ji-Young;Kim, Dong-Han;Lee, Bong;Kim, Joo-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권9호
    • /
    • pp.1933-1938
    • /
    • 2009
  • New $\pi$-conjugated polymer with vinylene linkage, poly((10-hexyl-3,7-phenothiazine)-alt-(4-(4-butyl-phenyl)- 3,5-diphenyl-4H-[1,2,4]triazole)-3,5-vinylene) (PTV-TAZ) was synthesized by the Heck coupling reaction. The photoluminescence (PL) maximum wavelength and the band gap energy of PTV-TAZ film were 555 nm and 2.41 eV, respectively. The HOMO energy level of PTV-TAZ was -4.99 eV, which was slightly lower than that of PTV (-4.89 eV). Electron deficient aromatic 1,2,4-triazole (TAZ) in the polymer backbone does not affect the HOMO energy level significantly. The maximum efficiency and brightness of double layer structured electroluminescent (EL) device (ITO/PEDOT (30 nm)/PTV-TAZ (60 nm)/Al) were 0.247 cd/A and 553 cd/$m^2$, respectively, which were significantly higher than those of the device based PTV (1.65 ${\times}\;10^{-4}$ cd/A and 4.3 cd/$m^2$). This is due to that TAZ unit improves electron transporting ability in the emissive layer. The turn-on voltage (defined as the voltage required to give a luminescence of 1 cd/$m^2$) of brightness of the device based on PTV-TAZ was 12.0 V, which was similar to that the based on PTV (11.5 V). This is due to that the ionization potential of PTV-TAZ is very similar to that of PTV.

Syntheses, Structures, and Characterization of Two Novel Copper(II) and Cadmium(II) Compounds Based on Pyridyl Conjugated 1,2,3-Triazole

  • Hong, Jin-Long;Qu, Zhi-Rong;Ma, Hua-Jun;Wang, Gai-Gai;Zhao, Hong
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1495-1500
    • /
    • 2014
  • Two new complexes with 5-methyl-1-(pyridine-3-yl)-1H-1,2,3-triazole-4-carboxylic acid (Hmptc) ligand: [$Cd(mptc)_2(H_2O)_4$] (1) and $[Cu(mptc)_4{\cdot}2H_2O]_n$ (2) were prepared and their crystal structures were determined by single crystal X-ray diffraction analyses. In complex 1, the Cd(II) ions coordinates with the pyridyl nitogen atom from the Hmptc ligand, forming a mononuclear Cd(II) compound. Complex 2 exhibits a novel two-dimensional (2D) polymer in which four Hmptc ligands stabilize the Cu(II) atom. And the coordination involves one nitrogen atom of the triazole, one oxygen atom of the carboxylic acid and the pyridyl nitrogen atom. In addition, FT-IR and solid-state fluorescent emission spectroscopy of two compounds have been determined.

1,2,3-트리아졸 폴리머의 상호계수 χ의 결정 (Determination of Interaction Parameter χ of the 1,2,3-Triazole Crosslinked Polymer)

  • 이동훈;이수경;김경태;백현종;전흥배;민병선;김원호
    • Elastomers and Composites
    • /
    • 제48권2호
    • /
    • pp.148-155
    • /
    • 2013
  • 폴리머의 가교밀도는 팽윤 실험 데이터를 이용한 Flory-Rehner 식에 의하여 정량적으로 계산할 수 있는데, Flory-Rehner 식에서 상호계수 (${\chi}$) 항에 있는 lattice constant ${\beta}_1$ 값은 주의해서 선정되어야 한다. 이 ${\beta}_1$ 값은 경험에 의한 실험값으로 연구자에 따라 조금씩 다른 값이 선택되어 사용되고 있다. 일반적으로 Mooney-Rivlin 식에서 가교점 사이의 평균 분자량 $M_c$ 값은 Flory-Rehner 식에서의 $M_c$ 값과 동일한 의미를 가지며 Mooney-Rivlin 식으로부터 $M_c$ 값을 구하면 Flory-Rehner 식에서 ${\beta}_1$ 값을 구할 수 있다. 따라서 본 연구에서는 먼저 Flory-Rehner 식의 상호계수 (${\chi}$) 항의 ${\beta}_1$ (=0.34) 과 1,2,3-트리아졸 폴리머의 팽윤 실험 데이터를 적용하여 $M_c$ 값을 계산하고, 두 번째로 인장 실험 데이터를 이용한 Mooney-Rivlin 식을 이용하여 $M_c$ 값을 계산 후 비교하였다. 결과적으로 두 개의 $M_c$ 값이 거의 유사하여 Flory-Rehner 식의 상호계수 (${\chi}$) 를 위해 선정한 ${\beta}_1$ (=0.34) 값이 적절함을 증명하였다.

3-Amino-1,2,4-triazole이 Maleated HDPE/Maleated EPDM 블렌드의 미세구조 및 물성에 미치는 영향 (Effect of 3-Amino-1,2,4-triazole on Microstructure and Properties of Maleated HDPE/Maleated EPDM Blend)

  • 김태현;장영욱;이용우;김동현
    • Elastomers and Composites
    • /
    • 제49권1호
    • /
    • pp.24-30
    • /
    • 2014
  • 3-Amino-1,2,4-triazole(ATA)을 비상용성 블렌드인 maleated HDPE(mHDPE)/maleated EPDM (mEPDM)(50 wt%/50 wt%)에 용융혼합에 의해 2.5 phr, 5.0 phr 첨가하였으며, ATA 첨가에 따른 블렌드의 미세구조, 기계적물성 및 유변물성을 FT-IR, FE-SEM, 인장시험, DMA 및 ARES를 이용하여 각각 조사하였다. FTIR 및 DMA 분석결과 용융혼합 과정에서 ATA가 mHDPE 및 mEPDM의 말레무수물과 반응하여 초분자적 수소결합이 형성되며, 이로부터 물리적 가교구조가 형성되는 것을 알 수 있었다. FE-SEM 분석결과 mHDPE/mEPDM 블렌드는 플라스틱인 HDPE가 연속상을 이루고 고무상인 EPDM이 분산상을 이루며 ATA를 첨가함으로써 모폴로지가 더욱 미세해짐을 알 수 있었다. 인장물성시험결과 ATA에 첨가에 의해 형성된 물리적가교구조로 인해 인장강도, 모듈러스, 파단신율 값 및 탄성복원력이 증가되었으며, 용융레올로지 특성 분석결과 ATA가 첨가됨으로써 블렌드의 저장탄성율과 용융점도가 증가됨을 알 수 있었다.

Influence of Quaternization on UCST Properties of Hydroxyl-Derivatized Polymers

  • Lee, Hyung-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.3001-3004
    • /
    • 2014
  • A series of hydroxyl-derivatized quaternized polymers were successfully synthesized by atom transfer radical polymerization (ATRP) and Cu(I)-catalyzed 1,3-dipolar cycloaddition of azide and alkynes (click chemistry), followed by quaternization reactions. ATRP was employed to synthesize poly(2-hydroxyethyl methacrylate) (PHEMA), followed by introduction of alkyne groups using pentynoic acid, leading to HEMA-Alkyne. 2-Azido-1-ethanol and 3-azido-1-propanol were combined with the HEMA-Alkyne backbone via click reaction, resulting in triazole-ring containing hydroxyl-derivatized polymers. Quaternization reactions with methyl iodide were conducted on the triazole ring of each polymer. Molecular weight, molecular weight distribution, and the degree of quaternization (DQ) were determined by gel permeation chromatography (GPC) and $^1H$ NMR spectroscopy. The average molecular weight ($M_n$) of the resulting polymers ranged from $5.9{\times}10^4$ to $1.05{\times}10^5g/mol$ depending on the molecular architecture. The molecular weight distribution was low ($M_w/M_n$ = 1.26-1.38). The transmission spectra of the 0.1 wt % aqueous solutions of the resulting quaternized polymers at 650 nm were measured as a function of temperature. Results showed that the upper critical solution temperature (UCST) could be finely controlled by the level of DQ.

Conventional and Inverted Photovoltaic Cells Fabricated Using New Conjugated Polymer Comprising Fluorinated Benzotriazole and Benzodithiophene Derivative

  • Kim, Ji-Hoon;Song, Chang Eun;Kang, In-Nam;Shin, Won Suk;Zhang, Zhi-Guo;Li, Yongfang;Hwang, Do-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1356-1364
    • /
    • 2014
  • A new conjugated copolymer, poly{4,8-bis(triisopropylsilylethynyl)benzo[1,2-b:4,5-b']dithiophene-alt-4,7- bis(5-thiophen-2-yl)-5,6-difluoro-2-(heptadecan-9-yl)-2H-benzo[d][1,2,3]triazole} (PTIPSBDT-DFDTBTz), is synthesized by Stille coupling polycondensation. The synthesized polymer has a band gap energy of 1.9 eV, and it absorbs light in the range 300-610 nm. The hole mobility of a solution-processed organic thin-film transistor fabricated using PTIPSBDT-DFDTBTz is $3.8{\times}10^{-3}cm^2V^{-1}s^{-1}$. Bulk heterojunction photovoltaic cells are fabricated, with a conventional device structure of ITO/PEDOT:PSS/polymer:$PC_{71}BM$/Ca/Al ($PC_{71}BM$ = [6,6]-phenyl-$C_{71}$-butyric acid methyl ester); the device shows a power conversion efficiency (PCE) of 2.86% with an open-circuit voltage ($V_{oc}$) of 0.85 V, a short-circuit current density ($J_{sc}$) of 7.60 mA $cm^{-2}$, and a fill factor (FF) of 0.44. Inverted photovoltaic cells with the structure ITO/ethoxylated polyethlyenimine/ polymer:$PC_{71}BM/MoO_3$/Ag are also fabricated; the device exhibits a maximum PCE of 2.92%, with a $V_{oc}$ of 0.89 V, a $J_{sc}$ of 6.81 mA $cm^{-2}$, and an FF of 0.48.

Highly Efficient Phosphorescent White Organic Light-Emitting Devices with a Poly(N-vinylcarbazole) Host Layer

  • Kang, Min-Ki;Moon, Dae-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권2호
    • /
    • pp.80-83
    • /
    • 2011
  • We have fabricated phosphorescent white organic light-emitting devices (WOLEDs) with a spin-coated poly(Nvinylcarbazole) [PVK] host layer. Iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$]picolinate (FIrpic), tris(2-phenylpyridine)iridium(III) [$Ir(ppy)_3$], and tris(2-phenyl-1-quinoline)iridium(III) [$Ir(phq)_3$], were used as the blue, green, and red guest materials, respectively. The PVK was mixed with FIrpic, $Ir(ppy)_3$, and $Ir(phq)_3$ molecules in a chlorobenzene solution and spin-coated in order to prepare the emission layer; 3-(4-biphenylyl)-4-phenyl-5-(4-tertbutylphenyl)-1,2,4-triazole (TAZ) was used as an electron transport material. The resultant device structure was ITO/PVK:FIrpic:$Ir(ppy)_3:Ir(phq)_3$/TAZ/LiF/Al. The electroluminescence, efficiency, and electrical conduction characteristics of the WOLEDs based on the doped PVK host layer were investigated. The maximum current efficiency of the three wavelength WOLED with the doped PVK host was 19.2 cd/A.