• Title/Summary/Keyword: -cyclodextrin

Search Result 573, Processing Time 0.032 seconds

FUNCTIONAL BEVERAGE FOR REDUCING BAD BREATH

  • Choi W;Kim S. R.;Kim Y. S;Park Y. K
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.140-151
    • /
    • 2001
  • This study was performed to examine a possible application of the beverage as a bad breath controlling food. To achieve this objective, methods of gas chromatography, electronic nose, sensory analysis and halimeter were used to detect reduction in odor intensities of bad breath caused by the functional beverage as well as its active ingredients. According to results of GC and electronic nose, adding green tea and champignon extracts to bad breath indicators, methylmercaptan and trimethylamine, resulted in significant reduction in headspace concentrations of two indicators. GC results revealed that headspace concentrations of 5 ug/ml of methylmercaptan and 30 ug/ml of trimethylamine added to various concentrations of two extracts were reduced up to $100\%$ after incubating mixtures at $37^{\circ}C$ for 5min. When the functional beverage was properly formulated with green tea extract, champignon extract and $\alpha$-cyclodextrin and evaluated for its deodorizing effect systematically, it also showed distinctive deodorizing activities against bad breath indicators. Conclusively, results obtained from this study might encourage introduction of a new type of bad breath control food in near future.

  • PDF

Enhancement of Solubility and Disolution Rate of Poorly Water-soluble Naproxen by Coplexation with $2-Hyldroxypropylo-{\beta}-cyclodextrin$

  • Lee, Beom-Jin;Lee, Jeong-Ran
    • Archives of Pharmacal Research
    • /
    • v.18 no.1
    • /
    • pp.22-26
    • /
    • 1995
  • The solubility and dissolution rate of naproxen (NPX) complexed with 2-hydroxypropyl-.betha.-cyc-lodextrin (2-HP.betha.CD) using coprecipitation, evaporation, freeze-drying and kneading method were investigated. Solubility of NPX linearly increased (correlation cefficient, 0.995) as $2-HP\betaCD$ concentraction increased, resutling in $A_l$ type phase solubility curve. Inclusion complexes prepared by four different methods were compared by different methods were compared by dfferential scanning calorimetry(DSC). The NPX showed sharp endothemic peak around $156^{\circ}C$ but inclusion complexes by evaporation, freeze-drying and kneading method showed very broad peak without distinct phase transtion temperature. In contrast, inclusion complex prepared by coprecipitation method resulted in detectable peak around $156^{\circ}C$ which is similar to NPX, suggesting incoplete formation of indusion co plex. Dissolution rate of inclusion complexes prepared by evaporation, frezz-drying and kneding except coprecipitation method was largely enhanced in the simultaed gastric and intestinal fluid when compared to NPX powder and commercial $NA-XEN^\registered$tablet. However, about 65% of NPX in gstric fluid. in case of inclusion complex prepared by coprecipitation method, formation of inclusion complex appeared to be incoplete, resulting in no marked enhancement of dissolution rate. From these findings, inclusion complexes of poorly water-soluble NPX with $2-HP\betaCD$ were useful to increase soubility and dissolution rate, resting in enhancement of bioavailability and minimization of gastrointestinal toxicity of drug upon oral administration of inclusion complex.

  • PDF

The Influence of Temperature, Ultrasonication and Chiral Mobile Phase Additives on Chiral Separation: Predominant Influence of β-Cyclodextrin Chiral Mobile Phase Additive Under Ultrasonic Irradiation

  • Lee, Jae Hwan;Ryoo, Jae Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4141-4144
    • /
    • 2012
  • This paper introduces a technique for resolving amino acids that combines the advantages of the conventional CSP (chiral stationary phase) method with the CMPA (chiral mobile phase additive) method. A commercially available chiral crown ether column, CROWNPAK CR(+), was used as the CSP and three cyclodextrins (${\beta}$-CD, ${\gamma}$-CD, HP-${\beta}$-CD) were used as the mobile phase additives. Chromatographic resolution was performed at $25^{\circ}C$ and $50^{\circ}C$ with or without sonication. A comparison of the chromatographic results under ultrasonic conditions with those under non-ultrasonic conditions showed that ultrasound decreased the elution time and enantioselectivity at all temperatures. In the case of the ${\beta}$-CD mobile phase additive, the elution time and enantioselectivity under ultrasonic condition were significantly higher than under non-sonic condition at all temperatures. Commercially available Chiralpak AD, Whelk-O2 and Pirkle 1-J columns were used as CSPs to examine more meticulously the effects of ultrasonication and temperature on the optical resolution. The optical resolution of some chiral samples analyzed at $25^{\circ}C$ and $50^{\circ}C$ with or without sonication was compared. As in the previous case, the enantioselectivity was lower at $25^{\circ}C$ but similar enantioselectivity was observed at $50^{\circ}C$.

Supramolecular Hydrogels Instantaneously Formed by Inclusion Complexation between Amphiphilic Oligomers and $\alpha$-Cyclodextrins

  • Zhao, Sanping;Lee, Jong-Hwi
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.156-162
    • /
    • 2009
  • Supramolecular hydrogels were instantaneously fabricated by mixing aqueous solutions of $\alpha$-cyclodextrins ($\alpha$-CDs) and amphiphilic methoxy (polyethylene glycol) (MPEG)-$\varepsilon$-caprolactone (CL) oligomer, which was synthesized via the ring-opening polymerization of the CL monomer using low-molecular-weight MPEG ($M_n$ of MPEG=2,000 g/mol) as an initiator. The supramolecular structure of the hydrogels was revealed by X-ray diffraction (XRD) analyses. Rheological studies of the hydrogels revealed an elastic character when the number of CL units in the oligomer was more than 2, and the obtained hydrogels showed high storage modulus but relatively low shearing viscosity due to the low-molecular-weight character of the oligomer, which was more preferable for use as an injectable delivery system. The physical properties of the hydrogels could be modulated by controlling the chain morphology and concentration of the oligomers, as well as the feed molar ratio of the oligomer to $\alpha$-CD. The components of the supramolecular hydrogels are biocompatible and can readily be eliminated from the body. These features render the supramolecular hydro gels suitable as drug delivery systems and tissue engineering scaffolds.

Physicochemical Stability of Leucine Enkephalin and $[D-Ala^2]$-Leucine Enkephalinamide in Buffered Aqueous Solution (완충 수용액중 로이신엔케팔린 및 [D-알라$^2]$-로이신엔케팔린아미드의 물리화학적 안정성)

  • Park, In-Sook;Chun, In-Koo
    • YAKHAK HOEJI
    • /
    • v.38 no.5
    • /
    • pp.488-495
    • /
    • 1994
  • To evaluate the feasibility of transmucosal delivery of leucine enkephalin (Leu-Enk) and its synthetic analog, $[D-Ala^2]$-leucine enkephalinamide (YAGFL), their physicochemical stabilities in aqueous buffered solutions were first investigated using a stability indicating high performance liquid chromatography. The degradation of Leu-Enk and YAGFL followed the pseudo-first-order kinetics. From the pH-rate profiles, it was found that the maximal stability of the two pentapeptides was at the pH of about 5.0. The shelf lives $(t_{90%})$ for the degradation of Leu-Enk and YAGFL at pH 5.0 and $40^{\circ}C$ were found to be 48.13 and 50.9 days, respectively. From the temperature dependence of the degradation, activation energies for Leu-Enk and YAGFL were calculated to be 13.61 and 13.47 kcal/mole, respectively. A higher ionic strength and a higher initial peptide concentration in buffered solution slowed the degradation of the two pentapeptides. The addition of 2-hydroxypropyl-${\beta}$-cyclodextrin into the peptide solution did not affect the stability significantly.

  • PDF

Critical Factors to High Thermostability of an ${\alpha}$-Amylase from Hyperthermophilic Archaeon Thermococcus onnurineus NA1

  • Lim, Jae-Kyu;Lee, Hyun-Sook;Kim, Yun-Jae;Bae, Seung-Seob;Jeon, Jeong-Ho;Kang, Sung-Gyun;Lee, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1242-1248
    • /
    • 2007
  • Genomic analysis of a hyperthermophilic archaeon, Thermococcus onnurineus NA1 [1], revealed the presence of an open reading frame consisting of 1,377 bp similar to ${\alpha}$-amylases from Thermococcales, encoding a 458-residue polypeptide containing a putative 25-residue signal peptide. The mature form of the ${\alpha}$-amylase was cloned and the recombinant enzyme was characterized. The optimum activity of the enzyme occurred at $80^{\circ}C$ and pH 5.5. The enzyme showed a liquefying activity, hydrolyzing maltooligosaccharides, amylopectin, and starch to produce mainly maltose (G2) to maltoheptaose (G7), but not pullulan and cyclodextrin. Surprisingly, the enzyme was not highly thermostable, with half-life ($t_{1/2}$) values of 10 min at $90^{\circ}C$, despite the high similarity to ${\alpha}$-amylases from Pyrococcus. Factors affecting the thermostability were considered to enhance the thermo stability. The presence of $Ca^{2+}$ seemed to be critical, significantly changing $t_{1/2}$ at $90^{\circ}C$ to 153 min by the addition of 0.5 mM $Ca^{2+}$. On the other hand, the thermostability was not enhanced by the addition of $Zn^{2+}$ or other divalent metals, irrespective of the concentration. The mutagenetic study showed that the recovery of zinc-binding residues (His175 and Cys189) enhanced the thermo stability, indicating that the residues involved in metal binding is very critical for the thermostability.

Solubilization of Pyrimethamine, Antibacterial Drug, by Low-Molecular-Weight Succinoglycan Dimers Isolated from Shinorhizobium meliloti

  • Kim, Hwan-Hee;Kim, Kyoung-Tea;Choi, Jae-Min;Tahir, Muhammad Nazir;Cho, Eun-Ae;Choi, Young-Jin;Lee, Im-Soon;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2731-2736
    • /
    • 2012
  • The use of pyrimethamine as antibacterial drug is limited by the poor solubility. To enhance its solubility, we prepared complexes of pyrimethamine with low-molecular-weight succinoglycan isolated from Sinorhizobium meliloti. Low-molecular-weight succinoglycans are monomers, dimers, and trimers of the succinoglycan repeating unit. The monomers and dimers were separated into their three species (M1, M2, and M3) and four fractions (D1 to D4) using chromatographic techniques, which were shown to be nontoxic. The solubility of pyrimethamine was markedly increased up to 42 fold by succinoglycan D3, where the level of its solubility enhancement was even 8-20 fold higher comparing with cyclodextrin or its derivatives. The complex formation of succinoglycan D3 with pyrimethamine was confirmed by $^1H$ nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and molecular modeling studies. Herein, we suggest that the low-molecular-weight succinoglycans may be utilized as highly effective solubilizers of pyrimethamine for pharmaceutical purposes.

Solubilization of CPD, a Novel Antivirus Compound Containing Pirimidine Structure, in Aqueous Solution (신규 피리미딘 구조를 함유한 항바이러스성 화합물 CPD의 수용액중 가용화)

  • Song Sukgil;Kweon Ho-Seok;Chung Youn Bok
    • YAKHAK HOEJI
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The purpose of the present study was to formulate the aqueous solution of 1-cyclopent-3-enylmethyl-6(3,5-dimethyl-benzoyl)-5-ethyl-1H-pyrimidine-2,4-dione (CPD), a novel antivirus compound containing pirimidine structure. For this purpose, the effects of various solubilization agents such as cosolvents [ethanol, propylene glycol (PG), polyethylene glycol 300 (PEG 300), polyethylene glycol 400 (PEG 400), glycerin], surfactants (Tween 80, Cremophor$^{(R)}$ RH40, Cremophor$^{(R)}$ EL, Poloxamer 407, Poloxamer 188) and a complexation agent [hydroxypropyl-${\beta}$-cyclodextrin (HPBCD)] , on the solubility of CPD in aqueous solution were evaluated. The solubility of CPD in water was under $1\;{\mu}g/ml$ at $20^{\circ}C$. Cosolvents such as ethanol, PG, PEG 300, PEG 400 and glycerin did not enhance the solubility of CPD at the $0{\sim}40\%$ concentration range. The solubility of CPD was significantly elevated by the addition of cosolvents over the $80\%$ concentration range. On the other hand, tween 80, Cremophor$^{(R)}$ L, Cremophor$^{(R)}$ RH40, and HPBCD showed enhanced effects on the solubility of CPD. The enhanced effects of Poloxamer 407 or Poloxamer 188 on the CPD solubility were less pronounced compared with tween 80, Cremophor$^{(R)}$ L or Cremophor$^{(R)}$ RH40. As a results, tween 80 aqueous solution was selected as an optimum solvent system. The aqueous solutions containing $20\%$ tween 80 were formulated as a dosing solution containing CPD for its intraperitoneal and intrahypodermic administration, respectively, The formular showed physical stability after stored for 7 days at $4^{\circ}C$.

Formation of A L-Ascorbic Acid 2-o-$\alpha$-glucoside during Kimchi Fermentation

  • Jun, Hong-Ki;Bae, Kyung-Mi;Kim, Young-Hee;Cheigh, Hong-Sik
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.3
    • /
    • pp.225-229
    • /
    • 1998
  • Formation of a L-Ascorbic Acid 2-O-$\alpha$-glucoside(AA-2G) is a chemically stable dervative of asocrbate that shows a vitamin C acitivity in vitro as well as in vivo. We studied whether ascorbic acid(AA) and AA-2G are formed in baechu kimchi during fermentation at 4 $^{\circ}C$ or 18$^{\circ}C$. To determine the formation of AA and AA-2G during fermentation of kimchi, wheat flour (as a carbhydrate source) added baechu kimchi (WBK) and control baechu kimchi(CBK) were prepared and fermented at 4 $^{\circ}C$ or 18 $^{\circ}C$. A substance like AA-2G was detected by HPLC from WBK fermented at 18 $^{\circ}C$ for 26 days in fall season and confirmed later to be the AA-2G showing distinctive characteristics of heat stability and resistance to ascrobate oxidase catalase. However, none of the kimchi formed AA-2G when the kimchi were fermented under a different temperature condition such as 4 $^{\circ}C$ instead of 18 $^{\circ}C$ or a different season such as summer instead of fall even if they were fermented at 18 $^{\circ}C$. The pH of kimchi was decreased rapidly during the first 3 days. and then decreased slowly after 4 days when the kimchi were fermented at 18 $^{\circ}C$. However, there were slight changes of pH in both CBK and WBK feremented at 4$^{\circ}C$ for 30 $^{\circ}C$ days. Therefore, the AA-2G -forming activity in kimchi seems to be correlated with the formentation temperature, the microorganisms involved in kimchi fermentation and a suitable glycosyl donor for AA as provided by wheat flour in this study.

  • PDF

Formulation of Omeprazole Preparations using Omeprazole-Ethylendiamine Complex (오메프라졸-에칠렌디아민 복합체를 이용한 제제설계)

  • Oh, Sea-Jong;Park, Seong-Bae;Park, Sun-Hee;Hwang, Sung-Joo;Rhee, Gye-Ju
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.1
    • /
    • pp.19-29
    • /
    • 1995
  • The study was carried out to develop useful formulation for omeprazole(OMP) through OMP-ethylendiamine complex(OMPED), and the pharmaceutical properties of formula were tested to find out the difference in vivo behaviors of formulations between the free and complexed OMP. Oral and suppository dosage forms were also formulated and the dissolution profiles and pharmacokinetic parameters were measured to observe the difference in bioavailability between the free and complex form, and the correlation between dissolution rate and bioavailability was evaluated. The results are summarized as follows; In the case of formulation for oral administration, the release of OMP from enteric OMPED pellets was found satisfactory to the requirement standard and no decomposition of OMP in the pellets was found in acidic solution. Therefore the enteric OMPED pellets are anticipated to be a stable formulation. The release of OMP from OMPED tablet with chitosan as excipient and coated with cellulose acetate phthalate was found to be significantly retarded. The results of bioavailability test for OMP and OMPED tablets with lactose-excipient showed that the AUC value of OMP tablet was $116.89\;{\mu}g\;{\cdot}\;min/ml$, that of OMPED tablet was $161.10\;{\mu}g\;{\cdot}\;min/ml$, respectively. The reason why was thought that OMP decomposes more readily in body than OMPED, and the AUC of the tablet with chitosan-excipient and coated with cellulose acetate phthalate was most enhanced. In the case of bioavailability for suppositories with OMP, $OMP-{\beta}\;-cyclodextrin$ complex and OMPED, the AUC of OMPED suppository was most increased. From the above results, it is thought that the more stable and bioavailable oral or rectal dosage forms could be developed by using the OMPED as a potential OMP complex.

  • PDF