Supramolecular Hydrogels Instantaneously Formed by Inclusion Complexation between Amphiphilic Oligomers and $\alpha$-Cyclodextrins

  • Zhao, Sanping (Department of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Lee, Jong-Hwi (Department of Chemical Engineering and Materials Science, Chung-Ang University)
  • Published : 2009.03.25

Abstract

Supramolecular hydrogels were instantaneously fabricated by mixing aqueous solutions of $\alpha$-cyclodextrins ($\alpha$-CDs) and amphiphilic methoxy (polyethylene glycol) (MPEG)-$\varepsilon$-caprolactone (CL) oligomer, which was synthesized via the ring-opening polymerization of the CL monomer using low-molecular-weight MPEG ($M_n$ of MPEG=2,000 g/mol) as an initiator. The supramolecular structure of the hydrogels was revealed by X-ray diffraction (XRD) analyses. Rheological studies of the hydrogels revealed an elastic character when the number of CL units in the oligomer was more than 2, and the obtained hydrogels showed high storage modulus but relatively low shearing viscosity due to the low-molecular-weight character of the oligomer, which was more preferable for use as an injectable delivery system. The physical properties of the hydrogels could be modulated by controlling the chain morphology and concentration of the oligomers, as well as the feed molar ratio of the oligomer to $\alpha$-CD. The components of the supramolecular hydrogels are biocompatible and can readily be eliminated from the body. These features render the supramolecular hydro gels suitable as drug delivery systems and tissue engineering scaffolds.

Keywords

References

  1. A. S. Hoffman, Adv. Drug Deliv. Rev., 43, 3 (2002)
  2. K. Y. Lee and D. J. Mooney, Chem. Rev., 101, 1869 (2001) https://doi.org/10.1021/cr000108x
  3. B. Jeong, Y. K. Choi, Y. H. Bae, G. Zentner, and S. W. Kim, J. Control. Release, 62, 109 (1999) https://doi.org/10.1016/S0168-3659(99)00061-9
  4. B. Jeong, Y. H. Bae, and S. W. Kim, J. Control. Release, 63, 155 (2000) https://doi.org/10.1016/S0168-3659(99)00194-7
  5. B. Jeong, Y. H. Bae, D. S. Lee, and S. W. Kim, Nature, 388, 860 (1997) https://doi.org/10.1038/42218
  6. J. P. Behr, The lock-and-Key Principle, John Wiley and Son, Chichester, U. K., 1994
  7. J. Szejtli, Cycledextrins and Their Inclusion Complexes, Akademiai Kiado, Budapest, 1982
  8. S. A. Nepogodiev and J. F. Stoddart, Chem. Rev., 98, 1959 (1998) https://doi.org/10.1021/cr970049w
  9. A. Harada, J. Li, and M. Kamachi, Nature, 356, 325 (1992) https://doi.org/10.1038/356325a0
  10. I. G. Panova and I. N. Topchieva, Russ. Chem. Rev., 70, 23 (2001) https://doi.org/10.1070/RC2001v070n01ABEH000608
  11. J. Szejtli, Chem. Rev., 98, 1743 (1998) https://doi.org/10.1021/cr970022c
  12. G. L. Mosher and D. O. Thompson, in Encyclopedia of Pharmaceutical Technology, 2nd Edition, J. Swarbrick, Ed., Marcel Dekker, 2002
  13. A. Nelson, J. M. Belitsky, S. Vidal, C. S. Joiner, L. G. Baum, and J. F. Stoddart, J. Am. Chem. Soc., 126, 11914 (2004) https://doi.org/10.1021/ja0491073
  14. J. Li, C. Yang, H. Z. Li, X. Wang, S. H. Goh, J. L. Ding, D. Y. Wang, and K. W. Leong, Adv. Mater., 18, 2969 (2006) https://doi.org/10.1002/adma.200600812
  15. K. Tokuhisa, E. Hamada, R. Karinaga, N. Shimada, Y. Takeda, S. Kawasaki, and K. Sakurai, Macromolecules, 39, 9480 (2006) https://doi.org/10.1021/ma060419v
  16. J. Li, A. Harada, and M. Kamachi, Polym. J., 26, 1019 (1994) https://doi.org/10.1295/polymj.26.1019
  17. J. Li, X. Li, Z. Zhou, X. Ni, and K. W. Leong, Macromolecules, 34, 7236 (2001) https://doi.org/10.1021/ma010742s
  18. K. M. Huk, T. Ooya, and N. Yui, Macromolecules, 34, 8657 (2001) https://doi.org/10.1021/ma0106649
  19. K. M. Huk, Y. W. Cho, and N. Yui, Macromol. Biosci., 4, 92 (2004) https://doi.org/10.1002/mabi.200300037
  20. H. S. Choi, K. Kontani, K. M. Huh, and S. Sasaki, Macromol. Biosci., 2, 298 (2002) https://doi.org/10.1002/1616-5195(200208)2:6<298::AID-MABI298>3.0.CO;2-#
  21. S. P. Zhao, L. M. Zhang, and D. Ma, J. Phys. Chem. B, 110, 12225 (2006) https://doi.org/10.1021/jp057506u
  22. J. Li, X. Li, X. Ni, and X. Wang, Biomaterials, 27, 4132 (2006) https://doi.org/10.1016/j.biomaterials.2006.03.025
  23. Y. K. Choi, Y. H. Bae, and S. W. Kim, Macromolecules, 31, 8766 (1998) https://doi.org/10.1021/ma981069i
  24. C. Fruijtier-Polloth, Toxicology, 214, 1 (2005) https://doi.org/10.1016/j.tox.2005.06.001
  25. A. Harada, J. Li, and M. Kamachi, Macromolecules, 26, 5698 (1993) https://doi.org/10.1021/ma00073a026
  26. W. H. Xie, W. P. Zhu, and Z. Q. Shen, Polymer, 48, 6791 (2007) https://doi.org/10.1016/j.polymer.2007.09.021
  27. K. Kalyanasundaram and J. K. Thomas, J. Am. Chem. Soc., 99, 2039 (1977) https://doi.org/10.1021/ja00449a004
  28. M. Wilhelm, C. Zhao, Y. Wang, and R. Xu, Macromolecules, 24, 1033 (1991) https://doi.org/10.1021/ma00005a010
  29. B. Jeong, Y. H. Bae, and S. W. Kim, Colloid Surf. B, 16, 185 (1999) https://doi.org/10.1016/S0927-7765(99)00069-7
  30. A. Harada and M. Kamachi, Macromolecules, 23, 2821 (1990) https://doi.org/10.1021/ma00212a039
  31. Y. Kawaguchi, T. Nishiyama, M. Okada, M. Kamachi, and A. Harada, Macromolecules, 33, 4472 (2000) https://doi.org/10.1021/ma992103b
  32. L. Huang, E. Allen, and A. E. Tonelli, Polymer, 39, 4857 (1998) https://doi.org/10.1016/S0032-3861(97)00568-5
  33. A. Harada, M. Okada, and M. Kamachi, Macromolecules, 28, 8406 (1995) https://doi.org/10.1021/ma00128a060
  34. J. Lu, I. D. Shin, S. Nojima, and A. E. Tonelli, Polymer, 41, 5871 (2000) https://doi.org/10.1016/S0032-3861(99)00773-9
  35. C. C. Rusa, J. Fox, and A. E.Tonelli, Macromolecules, 36, 2742 (2003) https://doi.org/10.1021/ma021755o
  36. Y. F. Chen, F. B. Zhang, X. M. Xie, and J. Y. Yuan, Polymer, 48, 2755 (2007) https://doi.org/10.1016/j.polymer.2007.03.023
  37. A. Jada, G. Hurtrez, B. Siffert, and G. Riess, Macromol. Chem. Phys., 197, 3697 (1996) https://doi.org/10.1002/macp.1996.021971117
  38. H. H. Winter and F. Chambon, Polym. Bull. (Berlin), 13, 297 (1985)