• Title/Summary/Keyword: 히트파이프

Search Result 337, Processing Time 0.043 seconds

Heat transfer characteristics of the heat pipe using simplified heat transfer model (단순 열전달 모델을 이용한 히트파이프의 열전달 성능특성에 관한 연구)

  • Seo, Jae-Hyeong;Bang, Yu-Ma;Seo, Lee-Soo;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • The objective of this study was to examine numerically the heat transfer and flow characteristics of the heat pipe with a wick using the simplified heat transfer model to enhance the cooling effects of high heat flux devices and minimizing the energy consumption for electric vehicles. The heat pipe with a wick was analyzed using commercial software with COMSOL and water was used as the working fluid. The velocity and temperature characteristics of the heat pipe were simulated numerically along the heat pipe and the local and average Nusselt numbers were calculated. As a result, the driving force occurred because of the temperature difference between the hot side and the cold side. The heat transfer of the heat pipe occurred from the hot side to the cold side and increased toward the center position. In addition, the average Nusselt numbers were 1.88 for the hot side and 0.1 for the cold side, and the maximum Nusselt number was 4.47 for the hot side and 0.7 for the cold side.

Theoretical Analysis of Heat Pipe Thermal Performance According to Nanofluid Properties (나노유체 특성에 따른 히트파이프 성능해석)

  • Lim, Seung Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.599-607
    • /
    • 2015
  • In this study, we theoretically investigate the thermal performances of heat pipes that have different nano-fluid properties. Two different types of nano-particles have been used: $Al_2O_3$ and CuO. The thermal performances of the heat pipes are observed for varying nano-particle aggregations and volume fractions. Both the viscosity and the conductivity increase as the volume fraction and the aggregation increase, respectively. Increasing the volume fraction helps increase the capillary limit in the well-dispersed condition. Whereas, the capillary limit is decreased under the aggregate condition, when the volume fraction increases. The dependence of the heat pipe thermal resistance on the volume fraction, aggregation, and conductivity of the nano-particles is analyzed. The maximum thermal transfer of the heat pipe is highly dependent on the volume fraction because of the high permeability of the heat pipe. For the proposed heat pipe, the optimum volume fraction of the nano-particle can be seen through 3D graphics.

Study on the Convective Heat Transfer and Pressure Drop for the Air flow Through a Plate Fin Tube Radiator of a Heat Pipe Heat Sink (평판 Fin-tube 배열을 갖는 히트파이프 히트싱크의 라디에이터를 통과하는 공기 유동에 대한 대류 열전달 및 압력 강하 연구)

  • 이수영;홍성은;강환국;김성훈;김철주
    • Journal of Energy Engineering
    • /
    • v.9 no.3
    • /
    • pp.212-220
    • /
    • 2000
  • 히트파이프 히트싱크의 라디에이터를 통과하는 공기 유동에 대한 열전달 및 유동 압력 강하를 구하기 위한 연구를 수행하였다. 이 라디에이터는 평판 휜-관 구조이며, 평판휜에 4개의 히트파이프가 유동 방향으로 정격 배열 되어있다. 입구 공기 속도 2.5~4m/s에 대해 열전달 성능실험과 수치해석을 수행하였다. 각 히트파이프의 단위 길이당 열속이 583.3W/m, 입구 공기 속도가 3m/s일때 총합 대류 열전달계수값은 약 32W/$m^2$K, 압력 강하는 8mmAq이었다. 전체속도범위에서 실험결과와 수치 해석 결과 사이에는 약 5%의 미만의 일치를 보였다.

  • PDF

Performance Test for the Performance Reliability of the Heat Pipe for Cooling Power Semiconductors (전력반도체 냉각용 히트파이프의 성능안정성 파악을 위한 성능시험)

  • 강환국
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.203-212
    • /
    • 2004
  • The heat pipe for cooling power semiconductor is required no performance changing during the life cycle up to 20 years. For the long reliable performance of the heat pipe, my reasons that has possibility to generate non condensable gases we not allowed. In this research, the maximum heat transport rate and operation characteristics that are related to various geometric and thermal conditions are carried out. Also the test items, specifications and methods to guarantee the long life cycle of the heat pipe for power semiconductor cooling device are provided and the tests are performed.

Development of the Structure for Enhancing Capillary Force of the Thin Flat Heat Pipe Based on Extrusion Fabrication (압출형 박판 히트파이프의 모세관력 향상을 위한 구조 개발)

  • Moon, Seok Hwan;Park, Yoon Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.755-759
    • /
    • 2016
  • The use of heat pipes in the electronic telecommunication field is increasing. Among the various types of heat pipes, the thin flat heat pipe has relatively high applicability compared with the circular heat pipe in the electronic packaging application. The thin flat heat pipe based on extrusion fabrication has a simple capillary wick structure consisting of rectangular cross sectional grooves on the inner wall of the pipe. Although the groove serves as a simple capillary wick, and many such grooves are provided on the inner wall, it is difficult for the grooves to realize a sufficiently high capillary force. In the present study, a thin flat heat pipe with a wire bundle was developed to overcome the drawback of poor capillary force in the thin flat heat pipe with grooves, and was evaluated by conducting tests. In the performance test, the thin flat heat pipe with the wire bundle showed a lower thermal resistance of approximately 3.4 times, and a higher heat transfer rate of approximately 3.8 times with respect to the thin flat heat pipe with grooves as the capillary wick respectively. The possibility of using the wire bundle as a capillary wick in the heat pipe was validated in the present study; further study for commercializing this concept will be taken up in the future.

A Study on the Thermal Response Characteristics of Snow Removing Facilities using Heat Pipe (히트파이프식 제설설비의 열응답 특성에 관한 연구)

  • Lee, Yong-Soo;Jang, Yeong-Suk
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.45-56
    • /
    • 1997
  • The purpose of this research was to study the characteristics of heat transfer of snow removing facilities using heat pipe by experimental method. Heat pipes was constructed a flexible tube connected between evaporator and condenser ends for altitude adjustment of evaporator and it was constituted an internal diameter of 25.4mm, a length of 950mm for heating section and a length of 6000mm for condenser section with copper material for closed system. The results showed that the effect of heat transfer was increased when inclination angle and inlet temperature of heating water increased. Wall temperature response by inclined angle $4.5^{\circ}c-9^{\circ}c$ and working fluid amount 0.96 from to 1.3 times of evaporator volume were better than those of other working fluid and angle.

  • PDF

Application of Heat Pipe for Hydration Heat Control of Mass Concrete (매스콘크리트의 수화열 저감을 위한 히트파이프의 현장적용성에 관한 연구)

  • Baek, Dong-Il;Kim, Myung-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.157-164
    • /
    • 2008
  • In order to raise efficiency in construction, construction period, construction costs etc. that have been problematic in the methods of hydration heat reduction thus far, this study has developed a new method. The principle of the developed construction method involves the laying of a heat conducting medium such as the heat pipe in the concrete, and through the fast conduction of heat by the heat pipe, the hydration heat occurring within the mass concrete is transferred to the exterior by which the internal hydration heat is reduced. If the study results of the onsite test are summarized, on application of existing hydration heat reduction methods, the highest temperature was reached in about 2$\sim$4 days, but when the heat pipe of this study was used, the period was reduced to within 24 hours. Moreover, when the thermal crack index was calculated with the method using the heat pipe as developed in this study, a value of 1.2 or higher was revealed, which is a level that can restrict the occurrence of cracks. Therefore, when the hydration heat control method using the heat pipe as developed in this study is applied, not only the effects of construction efficiency and reduction in construction period, but also outstanding economical effects can be expected.

Comparison of the Heat transport Limitations for Screen Mesh Wick and Sintered Metal Wick Heat Pipes by Theoretical Analysis (이론적 해석에 의한 스크린 메쉬윅과 소결윅 히트파이프의 열수송 한계 비교)

  • Kim Keun-Bae;Kim Yoo
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.267-274
    • /
    • 2004
  • Theoretical analysis for predicting the heat transport limitations of screen mesh wick and sintered wick heat pipes was performed. The heat pipe diameter was 8mm and water was used for working fluid. For the 250 mesh, each capillary pressures and heat transport limitations, thermal resistances were analyzed according to the operating temperatures, wick thicknesses and inclination angles, based on the effective capillary radius (r$\_$c/), porosity ($\varepsilon$) and permeability (K). The wick capillary limitation was increased as the operating temperature and the wick thickness were increased, and generally the sintered wick showed higher heat transport limitations than that of the screen wick. The thermal resistance of the screen wick was higher than that of the sintered wick and both thermal resistances were linearly increased as the wick thickness was increased.

A Study on Operating Characteristics and Development of Woven-Wired Wick Heat Pipe (편조 윅 히트파이프의 개발과 작동특성에 관한 연구)

  • Moon, Seok-Hwan;Choi, Choon-Gi;Hwang, Gunn;Choy, Tae-Goo
    • Journal of Energy Engineering
    • /
    • v.9 no.1
    • /
    • pp.54-59
    • /
    • 2000
  • 전자부품 및 시스템의 고속/고밀도화 추세에 따라 발열밀도가 계속증가하고 있다. 최근 팬티엄 II 급이상의 노트북 컴퓨터의 CPU에서는 칩당 발열량이 10W 이상으로 증가하고 있고 패키징 공간의 제한 때문에 소형히트파이프를 이용한 냉각이 많이 적용되고 있다. 본 연구에서는 모세압구동력이 크고 생산성등이 고려된 편조 형태의 새로운 윅을 개발하였으며 , 노트북 컴퓨터의 CPU 등 소형 전자부품냉ㄱ가에 적용가능한 직경 3, 4 mm 히트파이프를 설계 및 제작하였다. 직경 3, 4 mm Miniature Heat Pipe (이하 MHP) 의 작동특성은 일반적인 중형히트파이프와 다르므로 MHP 의 열전달 특성 및 작동성능에 미치는 각종 인자들의 영향을 파악하고자 성능시험을 수행하였다. 고려된 작동인자로는 작동유체 충전률, 전체 파이프길이 및 증발부, 응축부길이, 설치 경사각, 윅의 가닥수, 열부하 등이다. 작동인자의 영향과 관련된 연구결과는 향후 패키징을 위한 응용연구의 기초자료로 활용할 수 있을 것이다.

  • PDF