• Title/Summary/Keyword: 히스토그램 분석

Search Result 473, Processing Time 0.027 seconds

An Efficient Parallel Join Algorithm Based on Histogram Equalization in Present of Data Skew (데이터 편재 하에서 히스토그램 변환 기법에 기초한 효율적인 병렬 결합 알고리즘)

  • Choi, Hwang-Kyu;Park, Ung-Kyu
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.223-233
    • /
    • 1995
  • 본 논문에서는 데이터 분포가 편재된 상황하에서 부하의 불균형과 버켓 오벌플로우 문제를 해결하기 위해 히스토그램 변환 기법을 이용한 데이터 분산 방법과 이를 기초로 한 병렬 결합 알고리즘을 제안한다. 제안된 알고리즘의 성능은 시뮬레이션과 하이퍼큐브형 병렬 컴퓨터 상에서 실험적인 방법에 의하여 분석되었다. 그 결과 제안된 알고리즘이 기본의 해쉬 결합 방법보다 우수함을 보인다.

  • PDF

Scene Change Detection Method using Color Histogram and Feature Detection Algorithm (색상 히스토그램과 특징점 추출 알고리즘을 활용한 장면 전환 검출 방법)

  • Hyunju Oh;Wanjin Ko;Jiyong Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.741-744
    • /
    • 2023
  • 장면 전환 검출에서 단일 특성을 사용하는 경우 발생 가능한 정확도 감소의 문제를 해결하기 위해 색상 히스토그램 분포 차 분석과 특징점 추출 알고리즘을 활용한 방법을 제안한다.

Behavior Pattern Analysis and Design of Retrieval Descriptor based on Temporal Histogram of Moving Object Coordinates (이동 객체 좌표의 시간적 히스토그램 기반 행동패턴 분석 및 검색 디스크립터 설계)

  • Lee, Jae-kwang;Lee, Kyu-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.811-819
    • /
    • 2017
  • A behavior pattern analysis algorithm based on descriptors consists of information of a moving object and temporal histogram is proposed. Background learning is performed first for detecting, tracking and analyzing moving objects. Each object is identified using an association of the center of gravity of objects and tracked individually. A temporal histogram represents a motion pattern using positions of the center of gravity and time stamp of objects. The characteristic and behavior of objects are figured out by comparing each coordinates of a position history in the histogram. Behavior information which is comprised with numbers of a start and end frame, and coordinates of positions of objects is stored and managed in the linked list. Descriptors are made with the stored information and the video retrieval algorithm is designed. We confirmed the higher retrieval accuracy compare with conventional methods.

Broken Image Selection Algorithm based on Histogram Analysis (히스토그램 분석 기반 파손 영상 선별 알고리즘)

  • Cho, Jin-Hwan;Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.72-74
    • /
    • 2021
  • Recently, the spread of deep learning environments has increased the importance of dataset generation. Therefore, data is being augmented using GAN for efficient data set generation. However, several problems have been found in data generated using GAN, such as problems that occur in the early stages of learning and pixel breakage occurring in the generated image. In this paper, we intend to implement an image data selection algorithm to solve various problems arising from the existing GAN. The broken image screening algorithm was implemented to analyze the histogram distribution in the image and determine whether to store the generated image according to whether the result value satisfies the specified threshold value.

  • PDF

Food Image Representation by Analyzing Ingredients (음식재료성분 분석을 통한 음식이미지 표현)

  • Jin, Sou-Young;Choi, Ho-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.425-428
    • /
    • 2011
  • 이 논문은 음식인식 자동화를 위해서 음식 이미지를 표현하는 새로운 방법을 제시한다. 먼저, 사람이 음식 속 재료성문을 인식하는 방법을 모방하여, 음식이미지에서 윤곽선을 따라 다각형을 검출한다 그 흐름, 각 다각형의 특징 다각형에 해당하는 음식재료성분의 라벨은 다각형의 사이즈, 다각형의 가로세로 비율 - 이 추출된다. 여기서 음식재료성분의 라벨은 음식재료이미지로 훈련 받은 Semantic Texton Forests (STF)[3]에 의해 구해진다. 구해진 다각형의 특징을 이용해 음식이미지마다 다차원 히스토그램이 형성되는데, 이히스토그램은 컴퓨터가 사람과 유사하게 음식이미지를 이해할 수 있도록 표현된다. 이 히스토그램은 컴퓨터가 음식을 인식할 수 있도록 도와주는 중요한 특징으로 사용될 것이다.

Psychology Analysis using Color Histogram Clustering (색상히스토그램 클러스터링을 이용한 심리분석)

  • Cho, Jae-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.415-420
    • /
    • 2013
  • In recent, many researches have been studying sensitivity and psychology of human on color. Among them, a picture of children can be a tool to represent their emotion. Information of colors and direction on a child's picture often represent his internal psychological states unconsciously. In this paper, we propose the method that extract the color and direction information in order to analyze the psychology in the picture of children. Histogram clustering is used for color information detection. Direction information extract from inner edge value. In the result of experiments, we shows that our method is similar to the pattern classification of the general method.

Reversible Image Watermarking with Differential Histogram Shifting and Error Prediction Compensation (차이값 히스토그램 쉬프팅과 오류 예측 보정을 이용한 가역 영상 워터마킹)

  • Yeo, Dong-Gyu;Lee, Hae-Yeoun;Kim, Byeong-Man;Kim, Kyung-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.6
    • /
    • pp.417-429
    • /
    • 2010
  • Reversible watermarking inserts watermark into digital media in such a way that visual transparency is preserved and then enables to restore the original media from the marked one without any loss of media quality. This watermarking can be applied to quality-sensitive imaging such as medical imaging, military imaging, remote-sensing imaging, and precious artwork, where the original media should be preserved during image processing and analysis. In this paper, a reversible image watermarking technique that embeds message bits by modifying the differential histogram of adjacent pixels is presented. In order to satisfy both high embedding capacity and visual quality, the proposed technique exploits the fact that adjacent pixels in the image have highly spatial correlation. Also, we prevent overflow/underflow problem and salt-and-pepper artifacts by employing a predicted error compensation scheme. Through experiments using various test images, we prove that the presented technique provides perfect reversibility and high embedding capacity, while maintaining the induced-distortion low.

Selective Histogram Matching of Multi-temporal High Resolution Satellite Images Considering Shadow Effects in Urban Area (도심지역의 그림자 영향을 고려한 다시기 고해상도 위성영상의 선택적 히스토그램 매칭)

  • Yeom, Jun-Ho;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.47-54
    • /
    • 2012
  • Additional high resolution satellite images, other period or site, are essential for efficient city modeling and analysis. However, the same ground objects have a radiometric inconsistency in different satellite images and it debase the quality of image processing and analysis. Moreover, in an urban area, buildings, trees, bridges, and other artificial objects cause shadow effects, which lower the performance of relative radiometric normalization. Therefore, in this study, we exclude shadow areas and suggest the selective histogram matching methods for image based application without supplementary digital elevation model or geometric informations of sun and sensor. We extract the shadow objects first using adjacency informations with the building edge buffer and spatial and spectral attributes derived from the image segmentation. And, Outlier objects like a asphalt roads are removed. Finally, selective histogram matching is performed from the shadow masked multi-temporal Quickbird-2 images.

Improved Object Recognition using Wavelet Transform & Histogram Equalization in the variable illumination (다양한 조명하에서 웨이블렛 변환과 히스토그램 평활화를 이용한 개선된 물체인식)

  • Kim Jae-Nam;Jung Byeong-Soo;Kim Byung-Ki
    • The KIPS Transactions:PartD
    • /
    • v.13D no.2 s.105
    • /
    • pp.287-292
    • /
    • 2006
  • There are two problems associated with the existing principal component analysis, which is regarded as the most effective in object recognition technology. First, it brings about an increase in the volume of calculations in proportion to the square of image size. Second, it gives rise to a decrease in accuracy according to illumination changes. In order to solve these problems, this paper proposes wavelet transformation and histogram equalization. Wavelet transformation solves the first problem by using the images of low resolution. To solve the second problem the histogram equalization enlarges the contrast of images and widens the distribution of brightness values. The proposed technology improves recognition rate by minimizing the effect of illumination change. It also speeds up the processing and reduces its area by wavelet transformation.

Enhanced Binarization Method using Fuzzy Membership Function (퍼지 소속 함수를 애용한 개선된 이진화 방법)

  • Kim Kwang Baek;Kim Young Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.67-72
    • /
    • 2005
  • Most of image binarization algorithms analyzes the intensity distribution using the histogram for the determination of threshold value. When the intensity difference between the foreground object and the background is great, the histogram shows the tendency to be bimodal and the selection of the histogram valley as the threshold value shows the good result. On the other side. when the intensity difference is not great and the histogram doesn't show the bimodal property, the histogram analysis doesn't support the selection of the proper threshold value. This Paper Proposed the novel binarization method that applies the fuzzy membership function to each color value on the RGB color model and, by using the operation results, separates the features having the great readability from the background. The proposed method prevents the loss of information incurred by the gray scale conversion by using the RGB color model and extracts effectively the readable features by using the fuzzy inference Compared with the traditional binarization methods, the proposed method is able to remove the majority of noise areas and show the improved results on the image of transport containers , etc.

  • PDF