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1. Introduction

In relational database systems, join
operations are the most complex and
time consuming ones which limit
performance of such systems. Many
parallel join algorithms have been
proposed for parallel relational
database systems[4,6,8]. Among them, the
parallel hash-based join algorithm(PHJA)
has been found to be superior to other
join algorithms for the uniform
distribution of datal4,8].

In real databases, it is often found
that certain values for a given attribute

AQeE AFHTUH 20g
s qoieta WA 2Rg

occur more frequently than other values.

This phenomenon is referred to as
data skew. It is known that data
distribution for many textual databases
follows a variant of  Zipf's law,
representing skewed data distribution[5].
With such data distribution, the PHJA
shows two major  problems in
performance: load imbalance and bucket
overflow[2,10]. This is because data skew
can give rise to non-uniform distribution
after hashing. Thus, the effectiveness of
the PHJA depends on the degree of
uniformity in data distribution. As pointed
out in [4,9], most algorithms proposed for
the PHJA limit exploiting parallelism as
the skewness of data distribution
becomes large.



Several algorithms have been proposed
to overcome such limitations of the
PHJA in data skew[23,10]. Algorithms
proposed in (2] and [3] are based on
bucket size tuning. The algorithms are
proved to be effective with slightly
skewed data. However, they can not
remedy the problems of load imbalance
and bucket overflow in highly skewed
data. In [10], the proposed algorithm
added an extra scheduling phase to the
usual partitioning and joining phase to
solve the two problems above, However,
performance study in [9] indicated that,
unless the data is highly skewed, the
algorithm proposed in (10] becomes
markedly worse than that of PHJA.
This is because heuristics in the
scheduling phase require many steps for
efficient  join  operations. Moreover,
assumptions and approximations employed
in the heuristic algorithm are not valid in

slightly  skewed or uniform data
distributions.

This paper proposes an efficient
algorithm, called skew resolution join

algorithm(SRJA), for parallel join
operations with skewed data. We propose
a methodology for partitioning relations
evenly across all processors in a parallel
database system. Using the histogram
equalization technique, the framework
transforms the histogram of skewed data
to uniform distribution that corresponds
to the relative computing power of node
processors in the system. We performed
simulation and experiment on a real

parallel computer with the Zipf-like
distribution of hashed values for join
attributes. Both simulation and
experiment results indicate that the

proposed algorithm  exhibits  better
performance than the conventional PHJA
in the presence of data skew, with
negligible overhead in the absence of
data skew.

2. Data distribution framework

The following assumptions are made in

‘the remainder of this paper. The parallel

database system has P autonomous

brocessors numbered by 1,2,..., P, each
having its own memory and disk,
which are linked through an
interconnection network. There exist two
joining relations labeled as R and S in
the database, with R being the smaller

one. Initially, both relations are
horizontally  partitioned into disjoint
subsets of the tuples and evenly

distributed across all the processors.

2.1 Histogram equalization

Suppose that x is a discrete random

variable and g(x) is a monotonic
transformation function of the discrete
real variablex. Then the histogram

equalization process can be considered as

a  transformation y=g( %). In the
transformation, the input random variable

X, ranged over

(xlgng'"ﬁx]) is

X1, X9, s Xy,

mapped into an

output random variable Tv— ranged over
ViV V(Y1 <39<--<yg), such that
the output probability density follows a
uniform density.

Since a histogram of discrete random
variables can be approximated by
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Figure 1.

continupus random variables, we first
obtain the transfer function in the
continuous case. Because the
transformation is monotonic, the
fundamental theorem of random

. f{x)
variable[7) follows that fy(y)= PIE)
where, f(x)  andf(y) are the
probability densities of x and y,

respectively and g'(x) is the derivative
¥y x
of g(x). Hence [ fi{ndy= [ f(n)dr.

The integral on the right is the
cumulative distribution function

F{x)=P(x<x) of the input variable

x. Thus fyyf;‘,(y)dyr—F «x). In the

special case for which the output density
is forced to be a uniform  density,

-1
f;(y) Ye—N for

histogram equalization transfer function
becomes

y=g(x)=(yx—y)F (2} +y,. 1
Let us now return to the discrete case.
Suppose that H -(x) for x=2x,%;,...,%;

VIS y<Syk the

Data distribution framework for parallel joins.

represents the fractional number of
occurrence frequencies of input values.
Then the cumulative probability
distribution of the input variable, F (%),

is approximated by its

cumulative histogram as
X

F A= Zx H-(m). Hence equation

normalized
follows:

(1) can be madified by
y=g(x)=(yg—y, +1)

X

x 20 HA{m)+y, (2)

me= X,

Qur data distribution framework for
parallel  joins with the aim is shown in
figure 1. Initially, we have a histogram
of data values of the join attribute for a
relation, Then, we hash the data values.
Finally, the histogram of the hashed
values 'is transformed into a uniformly
distributed histogram using equation (2).
Thus, given an arbitrary data histogram,
we can obtain even distribution of data
among processors. In  our histogram

equalization, an input random variable x

indicates the #& distinct hashed values of
the join attribute and an output random

variable y corresponds to the processor
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Figure 2. Transfer function for histogram
equalization.

td, numbered by 1,2,...,P. Then the
histogram equalization transfer function is
obtained from equation (2) as

y=g(x)= (PmZZOH;(mH 3)

where [ | is ceiling function.

2.2 Finding upper boundary values

Since the transfer function in equation
(3) is monotonically increasing function,
an upper boundary value,
partition 1s obtained by inverse
transformation of equation (3). That 1is,

x, for each

the upper boundary value of the ith

processor can be obtained by g ().
Let the P

U1, Uy, ..

values be
hashed
value of the join attribute of R be vy
Then, a hashed value of the
attribute, a, falls
v a< v; for 1<i< P. Figure 1 shows

boundary

.,vp and the smallest

join

into the range

an example for determining the boundary
values from a transfer function.

One complication arises in determining
boundary values for partitioning in the

skew. If
g YN)=g ') for i#j, the processor

presence of data

#(<7) would have much more tuples than
other processors and processor j would
have no tuples at all. In the worst case,
where all the hashed values of the join
attribute have a single value, all tuples in
the relation R are mapped into a single
Processor.

Figure 2 illustrates a transfer function
for histogram equalization. Note the case
where one hashed value maps into
ids. In the case, it is
still possible to equalize the histogram of

different processor

the output random varable, by uniformly
distributing the tuples to the processors
into which that value is mapped. For
correct join operations, however, all the
tuples of S with the same boundary
value should be distributed to the
processors in which associated tuples of
R are assigned. Figure 3 shows
histograms for hashed values before and
after equalization.

3. Parallel join algorithm

The basic procedure for join
algorithm consists of three major phases
as follows.
Phase 1. Histogram evaluation phase
1.1 Each processor reads its portion of
R, hashes the join attribute of each tuple
and obtains a local cumulative histogram
of the hashed values in parallel.
1.2 Each processor broadcasts its own

local cumulative histogram, evaluates the

our

global cumulative histogram using
received local histograms for R in
parallel.
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(b) Histogram after equalization.

Figure 3. Histograms in a heavy skewed case.

1.3 Each processor determines the
boundary values in parallel.
Phase 2. Partitioning phase

Each processor partitions and

distributes its portion of both relations
using the histogram equalization transfer
function and the boundary values. As a
result of this phase, the corresponding
partitions of the two relations that have
the same ranged boundary values reside
on the same processor.
Phase 3. Joining phase

Each processor finally performs the
joining step by using the conventional

hash-based join algorithm on the
partition pairs in parallel.
The 1/O accesses from secondary

storage and communication cost through
an interconnection network become major
limiting factors on the performance of
parallel join operations. Therefore, the
join algorithm should be carefully
designed in order to minimize the /O
and communication costs. A useful
general observation is that an imbalance
in the number of tuples of the smaller
relation R per processor is much worse

than an imbalance in the number of
tuples of the larger relation S per
processor. This is because an imbalance
in the number of building tuples per
processor requires extra buckets in the
local joins, thus driving up the number of
1/0s significantly[8]. The partitioning
scheme in our algorithm only attempts to
balance tuples of the smaller relation R
per processor to minimize the /O cost.
Thus, in contrast to the PHJA, our
partitioning scheme has only one extra
scan of each processor's portion of the
smaller relation R. Moreover, our scheme
requires additional communication cost for
broadcasting the local histograms to each
Processor.

Note that during the local joining, the
size of each bucket should be smaller
than the memory capacity. However,
nonuniform  distribution of the join
attribute values may generate bucket
overflow, The performance in the
presence of overflowed buckets
diminishes because it requires extra I/O
to spool to disk and then re-read to
perform the join[28]. We can also use
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the histogram equalization technique to
resolve the bucket overflow. That is, we
the histogram equalization
technique for locally partitioning the
portion of the relations distributed at
buckets

can adopt

each processor into several

suitable in memory.

4. Simulation

Simulation experiments are conducted
for performance comparisons of the PHJA
and our SRJA. The performmance of both
algorithms is evaluated in the presence
of data skew. It 1is known that data
distribution for many practical situations
follows a variant of Zipf's Lawl[5]. In the
Zipf's distribution, the probability of a

duplication for the isth join attribute

value over N possible values in a
relation is given by

D,-=‘—Z.7%;y,l£ i< N,

where c= ““711—_—7 ,
_ Hy
N
HN(I—g)‘_—' EI Z.(ll_"g_) . (4)
In the distribution, @=1 corresponds to
the uniform distribution, while 6=0
corresponds to a highly skewed case.

4.1 Simulation model

In our model, the PHJA and SRJA are
simulated to obtain their total execution
time. The total execution time comprises

the CPU time, the /O time, and the
communication time. The execution
time during the #th phase is sum of

the three components

Ti=T'"+ T+ T Thus the total

execution time for the join operations

can be expressed as T=23,T".
1

The following assumptions are made in

simulation experiments: the cost for
writing the joined results into disks is
not taken into account because this cost
has the same effect on each join
algorithm; the network has an ability
of broadcasting and point-to-point
communication with the same

transmission cost.

Table 1. Parameter values for simulation.

ta' Time to compare with two attributes 3 uS

trs: Time to compute a hash function of a key
9 uS

te,. Time to move a tuple in memory 20 uS

ty,;c Time to build a join result tuple 10 uS

tsae Time to update a variable in memory 4uS

tsa' Time for CPU to send a page over network
1 aS

t: Time for CPU to receive a page over network
1 mS

tio- Time to transfer a page between disk and
memory 20mS

t,' Time to transfer a page in network 3mS

n : Number of tuples in a page 100

h : Number of elements in histogram table 5000

H : Size in pages of histogram table h/1000

experiments
three cases of

The simulation -
performed on the

are

samples data distributions: #= 1(uniform
6=0.2(mild
case) and 8H=0(heavy skew case). Each
data in synthetic sample database for
simulation  experiments is obtained by
random number generation by use of
the equation (4). To evaluate
communication cost for the partitioning

distribution case), skew

phase, T o mm, for the three cases, let R;

and 7T; be the number of pages received

from, and transmitted to the processor ¢,

respectively. Then, communication cost

for PHJA and SRJA is given by
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Tmm,,,*”"tm * max{(R1+T1).(R2+T2),
<, (Rp+Tp)}, where t, is time to

transfer a page. For the purpose of a
variance reduction on mean difference
between the simulated costs of two
algorithms, the same synthetic database
is used to simulate both the PHJA and
our SRJA[1].

The parameter values of simulation
experiments are as follows. The size of
the relation S is ten times the size of the
smaller relation R. The memory size on
each processor is M= R/P. The domain
size for the join attribute of each
relation is 10000. The rest of parameters
are set to the values shown in table 1[9].

Simulation experiments are execution
driven. That is, performance is measured
while  actually executing the join
algorithms of PHJA and SRJA. The
PHJA is experimented by the following
steps. The execution time for the
partitioning phase is calculated in terms
of the number of the basic operations
by performing actual-  hash-based
partitioning of the synthetic sample
database. The execution time for the
joining phase is evaluated by
calculating the CPU and I/O time costs
based on the number of /O operations
on the skewed partition. The total
execution time for the PHJA is
evaluated by adding the costs of the two
phases.

The SRJA is experimented similarly.
The execution time for phase 1 and
phase 2 of the SRJA is calculated in
terms of the number of the basic
operations by performing actual
partitioning based on the histogram

equalization methodology of the
syntheticsample database.

Exncution Time [Seconds) Exscution Time {Seconds]

SETENINTE

Execution Time {Seconds}
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Figure 4. Simulation result.



The execution time for the joining
phase is obtained by the same method
as used in the PHJA. The total execution
time for the SRJA is evaluated by adding

the costs of the three phases for each.

4.2 Simulation results

simulation experiments are
performed by considering the three points
of view: the effects of relation sizes, the
effects of the system configurations, and
the effects of the data
skew. Every simulation experiment are
performed 10 times with the same
parameter values. We take a mean value

Several

degree of

of the results of ten trials. Figure 4
shows simulation results.

Figure 4(a) shows the effects of the
join  algorithms on relation size in the
databases uniform

three  sample

distribution case (8=1), mild skew case

(6=0.2) and heavy skew case( §=0).
The simulation results show that 1) the
total time costs of the PHJA and SRJA
are linearly incremented by relation size,
2) the difference in the total time costs
between the PHJA and SRJA in the
heavy skew case is higher than that of
the mild skew case and 3) the difference
of the total time costs between the two
algorithms in the uniform distribution
case is little.

the effects of
the join algorithms on the number of

In figure 4(b), we show

processors in two skewed sample
databases. As the number of processors
becomes large, the performance of the
PHJA is rapidly degraded in the heavy
skew case because of bucket overflow

during the local joining phase. In this

case, we show that SRJA outperforms
the PHJA.

Finally, we show the effects of the
degree of data skew in figure 4(c). As
the degree of data skew
larger, performance of the
degraded

PHJA may generate one

becomes
PHJA is
rapidly. In the worst case, the
large bucket
leading to load imbalance and bucket
overflow which cause the performance
degradation of parallel join operations.

5. Experimentation

To investigate the performance of our

skew resolution join algorithm in real

database system and provide more faith
of simulation experiments, we
implemented our algorithm in
COREDBI11], which is is a 3-dimensional
hypercube machine developed by
KAIST's Computer Research Engineering
Laboratory. Currently, each node consists
of a 68030 CPU, 8Mbytes DRAM and
Disk Controllers. The operating system is
UNIX SystemV release 3.

To compare the SRJA with the PHJA
implemented on COREDB, the sort-merge
join operations are locally performed. It is
because UNIX uses the virtual memory
scheme as memory management method.
In the wvirtual memory environment, the
hash-based algorithm for local join do
not perform well due to more disk I/O
operations for swap-in and swap-out
operations when main memory becomes

full.

5.1 Experiments

For our experiments, we  used



benchmark relations with the join
attribute generated from Zipf's
distribution. Table 2 shows the

benchmark relation schemafl2]. As in
simulation experiments, experiments are
conducted on the three cases of sample

data distributions: €= 1 (uniform
distribution case), @=0.2(mild skew
case), and @=(0(heavy skew case).

Each synthetic sample database for the
experiments is obtained by a random
number generation by use of the
equation (4). We generate both relations
with the same tuple distribution.

The  parameter values for  the
experiments are as follows. The size of
the smaller relation R is 2000 tuples. The
size of the larger relation S is five times
the size of the smaller relation R. The
size of each tuple in both relations is 108
bytes. Thus total size of the relation R is
about 200 KBytes and that of the relation
S is about 1 MBytes. The domain size
for the join attribute is 200 and the
number of distinct hashed values in the
histogram table for the SRJA is 50.

Table 2. Benchmark relation schema.

Range
Type of
Value

Attribute Order Comment

Partition |Integer [0-9999 |Sequential |Unique

Join Integer |0-199 |Random  |Duplicate, Zipf
Distribution
String  |Char. Fixed 100 Bytes Size
Array

5.2 Experimental Results

We perform the experiments for the
three cases on the 4-node and 8-node

shows our

results. In the figure,
time for the SRJA is
obtained by adding costs for the
histogram evaluation phase and the
partitioning phase in the SRJA. From the
results, we observe the followings. Time
cost for the histogram evaluation phase
in the SRJA is negligibly small. Time
cost for the local join operations is a
dominating factor on performance of the
parallel join algorithms in the skewed
cases. As the dimension of hypercube(the
number of nodes) increases, time costs
for the partitioning phase of both
algorithms are linearly increased. This is
because of the characteristic of the
hypercube communication method. In the
uniform distribution case, performance of
the SRJA do not become worse than that
of the PHJA. This is because the PHJA
gives a little but non-negligible skewed
partitions in the uniform distribution case.
However, in contrast to the PHJA, the
SRJA gives even partitions among the
Processors. '

To show the relative efficiencies of the
two join algorithms, we measure the
performance gain of the SRJA over the
PHJA as follows:

configurations. Figure 5
experimental

partitioning

T prija— T swia X 100
T prya

Table 3 shows the performance gain
measured - from the experimental results.
In the table, we observe that in the
heavy skew case( #=0.0), as the
dimension of hypercube increases, the
performance gain is increased. This is
because the PHJA gives a highly skewed
partition in the heavy skew case and the
size of such partition is not linearly

Performance gain=

- 231 -



the number of node
processors in  the system increases.
However, the size of the maximum
skewed partition in the SRJA is linearly
decreased as the

processors Increases.

decreased as

number of node

-
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Pacsion sme nevua ([NTEIR
Join sme in Prua NN

Parttion ¥me in SRIA

7 Join #me in sruA 72

Processing time (sec)
g
T

%

A R Y
N

N

’/<<///////////////////////////////////////////////////////////A
N

Z
Vi iz

N

0.0 o
Variati of

o

2
€ ( sk

(2) 4-node hypercube computer.

1200 T T T
paon tme inPriua ([
Join eme In PruA NN
bl Partiion ¥me In SRUA |
Join tme In SRin 2
< N
i=r :
rY N
g \?
Z
] N |
N
.l N ]
a ‘§¢ X
N N
= N N ]
N N
N N
N N\
00 0z 0

<

ariations of @ { skewness )

(b) 8-node hypercube computer.

Figure 5. Experimental results

In the mild skew case( §=0.2), as the

dimension of hypercube increases, the

reduced. This is
because the size of the maximum skewed
partition in both the PHJA and the SRJA
is linearly decreased as the number of
node processors increases.

performance gain 1is

Table 3. Performance gain.

6=0.0 | 6=0.2 | 6=1.0
4-node | 16.39 24.58 -0.02
8-node | 23.58 13.81 0.05

6. Conclusions

In this paper, we first have proposed a
data distribution framework for parallel
join. Our data distribution framework
employs the histogram  equalization
technique, which evenly distributes data
across  processors. We  then
proposed an  efficient parallel join
algorithm based on the data distribution
framework which takes data skew into
account. Our proposed join algorithm is
carefully considered to minimize the 1/O
and communication costs and is designed

have

to reduce bucket overflow and load
imbalance for real world situations.

The performance of the proposed
algorithm has been evaluated and
compared with the parallel hash-based
join  algorithm by  simulation and

experiment on the real hypercube parallel
computer with synthetic
databases. Comparison results from both
the simulation and have
shown that the proposed algorithms
have better performance than the parallel
hash-based join the
presence of data skew, with negligible
overhead in the absence of data skew.

several

experiment

algorithm in
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