• 제목/요약/키워드: 히스토그램 기반 템플릿 매칭

검색결과 9건 처리시간 0.031초

볼록총채벌레 자동판정을 위한 후보영역 검출 (Detection of Candidate Areas for Automatic Identification of Scirtothrips Dorsalis)

  • 문창배;김병만;이종열;현재욱;이평호
    • 한국산업정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.51-58
    • /
    • 2012
  • 볼록총채벌레는 최근 감귤원 해충 피해의 주요 해충으로 인식되어 주기적인 예찰이 이루어지고 있으나 성충의 크기가 0.8mm 정도로 작아 육안 식별에 어려움이 있다. 본 논문에서는 예찰 트랩에 포집된 볼록총채벌레를 자동으로 판별하기 위한 후보 영역 검출 방법을 제안하였다. 본 논문에서 사용한 방법은 히스토그램 기반의 템플릿 매칭으로 그레이 이미지와 그레디언트 이미지를 합성한 이미지를 사용하였다. 50 배율의 광학 현미경으로 영상을 획득 하였고, 제안한 방법의 객관적인 성능 판별을 위해 기존 방법[8]과 노이즈 제거 이미지를 이용한 히스토그램 기반 템플릿 매칭방법 그리고 그레디언트 이미지를 이용한 히스토그램 기반 템플릿 매칭 방법들과 비교 실험을 하였다. 실험결과 본 논문에서 제안한 방법이 기존 전처리[8] 방법 보다 약 14.42% 향상된 성능을 보였고, 노이즈 제거 이미지를 이용한 방법보다 41.63%, 그레디언트 이미지를 이용한 방법보다 21.17% 높은 성능을 보였다.

고속 객체 검출을 위한 적분 히스토그램 기반 프레임워크 (Integral Histogram-based Framework for Rapid Object Tracking)

  • 고재필;안정호;홍원기
    • 한국산업정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.45-56
    • /
    • 2015
  • 본 논문에서는 스마트폰 카메라의 객체기반 자동초점 기능을 위해, 움직이는 물체의 고속 추적 방법을 제안한다. 사양이 낮은 플랫폼에서의 비-학습 제약을 고려하여 히스토그램 특징 기반의 슬라이딩 윈도우 검출 기법을 사용한다. 각 부분 윈도우에 대한 히스토그램의 계산 시간문제는 적분 히스토그램을 통해 해결한다. 본 논문에서는 지역적 후보 검출, 적응적 템플릿 크기 방법을 제안한다. 또한 추적 위치의 안정화를 위해 정합 함수에 안정화 항을 추가하는 기법을 제안한다. 자체 수집한 데이터에 대한 실험결과는 PC 환경에서 초당 100 프레임 수준의 높은 처리 속도 달성을 보여주었다.

패턴매칭을 이용한 섬유결함 검출시스템의 설계 (A system design for textile defect detection using pattern matching)

  • 강현수;김종준;송낙운
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.474-477
    • /
    • 2010
  • 본 논문에서는 패턴인식을 이용한 의류의 결함을 자동으로 탐색하는 시스템을 설계하였다. 이는 히스토그램을 기반으로 하여 영상의 특징을 추출하고 템플릿 매칭을 이용해서 패턴을 추적하도록 하였스며, 또한, SSIM(Structural Similarity) Index를 통해 추적된 패턴과 원 패턴의 유사도를 HVS(Human Vision System)을 기준으로 하여 결함을 판별할수 있도록 하였다.

블록가중치의 최적화를 통해 개선된 LBP기반의 표정인식 (An Improved LBP-based Facial Expression Recognition through Optimization of Block Weights)

  • 박성천;구자영
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권11호
    • /
    • pp.73-79
    • /
    • 2009
  • 본 논문에서는 Local Binary Pattern 히스토그램의 템플릿 매칭을 이용한 얼굴 표정 인식에서 인식률을 높이는 방법을 제안한다. 이 방법에서, 주어진 얼굴 영상은 작은 크기의 블록으로 분할되고 각 블록에서 구해진 LBP 히스토그램은 블록 특징으로 사용된다. 입력 영상에서의 블록 특징과 모델의 해당블록 특징 사이에서 블록 상이도가 계산된다. 주어진 영상과 모델 영상 사이의 영상 상이도는 블록 상이도의 가중 합으로 계산된다. 기존의 방법들에서는 직관에 따른 블록 가중치를 사용하는데 본 논문에서는 블록 가중치를 트레이닝 샘플들로부터 최적화를 통해서 구하는 방법을 제안하고 있다. 실험을 통해서 제안된 방법이 기존의 방법보다 우수함을 보인다.

템플릿을 기반으로 한 보행자 교차 상황에서의 특정 보행자 검출 방법 (Method for detecting specific pedestrian based template in pedestrian crossing)

  • 조경민;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.363-366
    • /
    • 2016
  • 본 논문에서는 보행자 검출 시, 교차 상황에서 발생하는 문제 해결을 위한 방법을 제안한다. 영상에서 특정 보행자를 검출하는 동안 다른 보행자와 교차하는 경우, 기존에 검출하던 보행자가 아닌 다른 보행자를 잘못 검출하는 문제가 발생한다. 문제 해결을 위해 제안하는 방법은 다음과 같다. 먼저, 검출할 특정 보행자를 bounding box로 선택하고 해당영역을 템플릿으로 추출한다. HOG를 이용하여 영상에서 보행자들을 검출하고, 후보영역으로 지정한다. 후보영역으로 지정된 보행자들을 앞서 템플릿으로 추출한 특정보행자와 비교하여 검출할 보행자를 최종 선택한다. 비교에는 템플릿 매칭, 히스토그램 비교와 LBP를 이용한다.

  • PDF

SIFT-Grid를 사용한 향상된 얼굴 인식 방법 (An Improved Face Recognition Method Using SIFT-Grid)

  • 김성훈;김형호;이현수
    • 디지털융복합연구
    • /
    • 제11권2호
    • /
    • pp.299-307
    • /
    • 2013
  • 본 논문은 SIFT-Grid 기반의 얼굴 인식 시스템에서 식별 능력의 향상과 계산량 감소를 목적으로 한다. 첫번째는 한 얼굴 클래스의 다양한 훈련 이미지로부터 비슷한 SIFT 특징점들은 제거하고, 상이한 특징점들은 병합하는 통합템플릿의 구성 방법을 제안한다. 통합템플릿은 SIFT-Grid를 통해 나누어진 훈련 이미지들의 동일 부분영역 내의 특징점들에 대한 유사도 행렬의 계산과 임계치 기반의 히스토그램의 계산을 통해 구성하였다. 두 번째는 구성된 통합템플릿들로부터 테스트 이미지의 효과적인 식별을 위한 유사도 계산 방법을 제안한다. 유사도의 계산은 테스트 이미지와 각 클래스의 통합템플릿간의 일대일 비교로 수행된다. 이때 동일 부분영역 별로 유사도 점수와 임계치 기반의 보팅 점수가 계산된다. 얼굴 인식 작업에 대한 실험 결과 제안된 방법이 SIFT-Grid 기반의 다른 두 방법보다 정확한 것으로 확인 되었고, 또한 계산량도 감소하였다.

타브 코드 인식 및 연주를 위한 시스템 설계와 구현 (System Design and Implementation for Recognizing and Playing Guitar Tab Chords)

  • 백병현;이현종;오형석;함종현;황두성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.119-122
    • /
    • 2015
  • 기타를 처음 접할 때 겪는 어려움은 크게 운지법과 곡에 대한 이해다. 연주자마다 곡의 연주 방법이 상이하기 때문에 한 곡에 대해서도 다양한 타브 악보가 존재한다. 이 논문은 타브 악보를 인식하여 연주를 수행하는 휴대 가능한 시스템 설계를 제안한다. 기 연구된 악보 인식은 5선 기반의 악보를 대상으로 하였으며 수평 히스토그램을 사용하여 5선을 제거 한 뒤 나타나는 기호들을 인식했다. 본 논문에서는 6선인 타브 악보 인식 및 연주 시스템을 휴대 기기에서도 사용 가능하게 설계하여 많은 연산 양이 요구되는 선 제거 과정을 거치지 않는다. 템플릿 매칭 기법으로 전체 악보에서 타브 악보의 영역을 탐색하고, 탐지된 영역 안에서 선의 시작점을 탐색한다. 선의 시작부터 끝까지 가상 블록을 사용하여 선에 존재하는 공백을 탐지하고, 공백의 분할을 이용해 프렛을 분할하며, 프렛 인식은 프로토타입 기반 분류기를 이용하여 97.0%의 인식률을 보였다.

실시간 아바타 표정 제어를 위한 SVM 기반 실시간 얼굴표정 인식 (SVM Based Facial Expression Recognition for Expression Control of an Avatar in Real Time)

  • 신기한;전준철;민경필
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.1057-1062
    • /
    • 2007
  • 얼굴표정 인식은 심리학 연구, 얼굴 애니메이션 합성, 로봇공학, HCI(Human Computer Interaction) 등 다양한 분야에서 중요성이 증가하고 있다. 얼굴표정은 사람의 감정 표현, 관심의 정도와 같은 사회적 상호작용에 있어서 중요한 정보를 제공한다. 얼굴표정 인식은 크게 정지영상을 이용한 방법과 동영상을 이용한 방법으로 나눌 수 있다. 정지영상을 이용할 경우에는 처리량이 적어 속도가 빠르다는 장점이 있지만 얼굴의 변화가 클 경우 매칭, 정합에 의한 인식이 어렵다는 단점이 있다. 동영상을 이용한 얼굴표정 인식 방법은 신경망, Optical Flow, HMM(Hidden Markov Models) 등의 방법을 이용하여 사용자의 표정 변화를 연속적으로 처리할 수 있어 실시간으로 컴퓨터와의 상호작용에 유용하다. 그러나 정지영상에 비해 처리량이 많고 학습이나 데이터베이스 구축을 위한 많은 데이터가 필요하다는 단점이 있다. 본 논문에서 제안하는 실시간 얼굴표정 인식 시스템은 얼굴영역 검출, 얼굴 특징 검출, 얼굴표정 분류, 아바타 제어의 네 가지 과정으로 구성된다. 웹캠을 통하여 입력된 얼굴영상에 대하여 정확한 얼굴영역을 검출하기 위하여 히스토그램 평활화와 참조 화이트(Reference White) 기법을 적용, HT 컬러모델과 PCA(Principle Component Analysis) 변환을 이용하여 얼굴영역을 검출한다. 검출된 얼굴영역에서 얼굴의 기하학적 정보를 이용하여 얼굴의 특징요소의 후보영역을 결정하고 각 특징점들에 대한 템플릿 매칭과 에지를 검출하여 얼굴표정 인식에 필요한 특징을 추출한다. 각각의 검출된 특징점들에 대하여 Optical Flow알고리즘을 적용한 움직임 정보로부터 특징 벡터를 획득한다. 이렇게 획득한 특징 벡터를 SVM(Support Vector Machine)을 이용하여 얼굴표정을 분류하였으며 추출된 얼굴의 특징에 의하여 인식된 얼굴표정을 아바타로 표현하였다.

  • PDF

차량 헤드라이트 불량검사 방법 (Inspection of Vehicle Headlight Defects)

  • 김근홍;문창배;김병만;오득환
    • 한국산업정보학회논문지
    • /
    • 제23권1호
    • /
    • pp.87-96
    • /
    • 2018
  • 본 논문에서는 차량 헤드라이트의 불량 유무를 판별하기 위하여 생산된 헤드라이트 이미지를 위치 및 회전 보정 후 검사이미지의 ROI(Region of Interest)와 표준 이미지의 ROI와의 유사도를 이용하여 불량 유무를 판단하는 방법을 제안하였다. 유사도 판별은 OpenCV에서 제공하는 템플릿매칭 유사도 판별방법을 응용하여 히스토그램 기반에서 유사도를 판별하는 방법을 사용하였고, 성능 분석을 목적으로 기존 OpenCV의 기본 방법과 비교하였다. 분석결과, OpenCV의 기본 방법보다 좋은 성능을 보임을 알 수 있었고, 제안 방법의 경우 불량 판별율 100%에 근접함을 알 수 있었다.