• Title/Summary/Keyword: 희수

Search Result 1,632, Processing Time 0.03 seconds

Lithological Characteristics and Deterioration Diagnosis of Dosolammaaebulsang (Rock-carved Buddha Statue of Dosolam) in the Seonunsa Temple, Gochang, Korea (고창 선운사 도솔암마애불의 암석학적 특성과 손상도 진단)

  • Park, Sung-Mi;Ryu, Keong-Seok;Choi, Hee-Soo;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.27 no.1
    • /
    • pp.101-114
    • /
    • 2011
  • The rock-carved Buddha statue at Dosolam (Korea Treasure No. 1200) of the Seonunsa temple in Gochang is unique style sculptured on natural rock cliff of 13.0m height. The Buddha statue is composed of volcanic complex with tuff, dacitic tuff breccia, tuff bereccia and lithic tuff. Especially, the Buddha statue is characterized by hydrothermal alteration and fragmentation on the upper and lower part. As a result of damage diagnosis, exfoliation and detachment of physical weathering are high of 11.3% and 9.3%, respectively. Infrared thermography analysis, exfoliation and micro-cracks occurred in the measuring parts that have not been confirmed by naked eyes. Chemical index of alteration and weathering potential index of host rock for the Buddha statue are 55.16 to 64.01 and 6.14 to 9.92 which are represented within highly weathering degree. In surface, dark black, reddish brown and white discoloration are observed prominently in the lower. Brown discoloration 6.9% is highest. According to the P-XRF measurements, high concentration of Fe in common, in part of dark black discoloration was Mn, white and brown discoloration in part of S and Ca content were higher. Biological weathering that yellowish brown and dark gray crustoes lichenes appeared by 20.8% and 13.3%, respectively. Therefore, comprehensive deterioration rate of Buddha statue show physical damage by 21.2%, discoloration for inorganic contaminants by 10.8% and biological damage by 39.4%. Ultrasonic velocity measurement carried out of Buddha statue on the surface by 555 points. Measured value of ultrasonic velocity was about 2,273m/s(1,067 to 3,215m/s, and weathering coefficient is 0.5(0.4 to 0.8) that progress on MW(moderately weathered) to HW(highly weathered) grade of rocks.

Structural change and electrical conductivity according to Sr content in Cu-doped LSM (La1-xSrxMn0.8Cu0.2O3) (Sr 함량이 Cu-doped LSM(La1-xSrxMn0.8Cu0.2O3)의 구조적변화와 전기전도도에 미치는 영향)

  • Ryu, Ji-Seung;Noh, Tai-Min;Kim, Jin-Seong;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.2
    • /
    • pp.78-83
    • /
    • 2012
  • The structural change and the electrical conductivity with Sr content in $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_3$ (LSMCu) were studied. $La_{0.8}Sr_{0.2}MnO_3$ (LSM) and $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_3$ ($0.1{\leq}x{\leq}0.4$) were synthesized by EDTA citric complexing process (ECCP). A decrease in the lattice parameters and lattice volumes was observed with increase of Sr content, and these results were attributed to the increasing $Mn^{4+}$ ions and $Cu^{3+}$ ions in B-site. The electrical conductivity measured from $500^{\circ}C$ to $1000^{\circ}C$ was increased with increase of Sr content in the $0.1{\leq}x{\leq}0.3$ composition range, and it was 172.6 S/cm (at $750^{\circ}C$) and 177.7 S/cm (at $950^{\circ}C$, the maximum value) in x = 0.3. The electrical conductivity was decreased in x = 0.4 because of the presence of the second phase in the grain boundaries. The lattice volume was contracted by increase of $Mn^{4+}$ ions and $Cu^{3+}$ ions in B-site according to increase of Sr content and the electrical conductivity was increased with increase of charge carriers which were involved in the hopping mechanism.

Microstructural property and catalytic activity of nano-sized MnOx-CeO2/TiO2 for NH3-SCR (선택적 촉매 환원법 재료로서 나노 사이즈 MnOx-CeO2/TiO2 촉매에 대한 미세 구조적 특성과 촉매활성 평가)

  • Hwang, Sungchul;Jo, Seung-hyeon;Shin, Min-Chul;Cha, Jinseon;Lee, Inwon;Park, Hyun;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.3
    • /
    • pp.115-120
    • /
    • 2016
  • $CeO_2$ is used as a co-catalyst with $TiO_2$ to improve the catalytic activity of $MnO_x$ and characterization of nano-sized powder is identified with de-NOx efficiency. A comparison between $MnO_x-CeO_2/TiO_2$ and single $CeO_2$ was conducted in terms of microstructural analysis to observe the behavior of $CeO_2$ in the ternary catalyst. The $MnO_x-CeO_2/TiO_2$ catalyst was synthesized by sol-gel method and the average particle size of the single $CeO_2$ is about $285{\mu}m$ due to the low thermal stability, whereas the particle size $MnO_x-CeO_2/TiO_2$ is about 130 nm. The strong interaction between Ce and Ti was identified through the EDS mapping by transmission electron microscopy (TEM). The improvement about 20 % of $de-NO_x$ efficiency is observed in the low-temperature ($150^{\circ}C{\sim}250^{\circ}C$) and vigorous oxygen exchange by well-dispersed $CeO_2$ is the reason of catalytic activity improvement.

Evaluation of Denitrification Reactivity by the Supported Nanoscale Zero-Valent Iron Prepared in Ethanol-Water Solution (이중용매에서 제조된 나노영가철을 이용한 질산성질소의 환원반응성 평가)

  • Park, Heesu;Park, Yong-Min;Oh, Soo-Kyeong;Lee, Seong-Jae;Choi, Yong-Su;Lee, Sang-Hyup
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1008-1012
    • /
    • 2008
  • Nanoscale zero-valent iron(nZVI) is famous for its high reactivity originated from its high surface area and it has received considerable attentions as one of the latest innovative technologies for treating contaminated groundwater. Due to its fine powdery form, nZVI has limited filed applications. The efforts to overcome this shortcoming by immobilizing nZVI on a supporting material have been made. This study investigated the differences of resin-supported nZVI's characteristics by changing the preparation methods and evaluated its reactivity. The borohydride reduction of an iron salt was proceeded in ethanol/water solvent containing a dispersant and the synthesis was conducted in the presence of ion-exchange resin. The resulting material was compared to that prepared in a conventional way of using de-ionized water by measuring the phyrical and chemical characteristics. BET surface area and Fe content of nZVI-attached resin was increased from $31.63m^2/g$ and 18.19 mg Fe/g to $38.10m^2/g$ and 22.44 mg Fe/g, respectively, by switching the solution medium from water to ethanol/water with a dispersant. The reactivity of each material was tested using nitrate solution without pH control. The pseudo first-order constant of $0.462h^{-1}$ suggested the reactivity of resin-supported nZVI prepared in ethanol/water was increased 61 % compared to that of the conventional type of supported nZVI. The specific reaction rate constant based on surface area was also increased. The results suggest that this new supported nZVI can be used successfully in on-site remediation for contaminated groundwater.

Effects of Combination of Air Temperature and Soil Moisture Contents on Growth, Clove Initiation, Physiological Disorders, and Yield of Garlic (기온과 토양수분 함량에 따른 난지형 마늘의 생장, 인편분화, 생리장해 및 수량에 미치는 영향)

  • Lee, Hee Ju;Lee, Sang Gyu;Kim, Sung Kyeom;Mun, Boheum;Lee, Jin Hyoung;Lee, Hee Su;Kwon, Young Seok;Han, Ji Won;Kim, Cheol Woo
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.191-198
    • /
    • 2018
  • The objective of this study was to determine the effects of combination of air temperature and soil water contents on growth, physiological disorder rate, and yield of garlic. This experiments has been carried out in the typical plastic house (one side open and other side installed ventilation fans) which was maintained gradient air temperature (maximum different value of air temperature : $6^{\circ}C$). The excessive irrigation (EI) set at $0.34m^3/m^3$ soil moisture contents. The significant differences found in the growth parameters of garlics as affected by air temperature and soil moisture conditions. The plant height of garlic with combination of ambient $(A)+6^{\circ}C$ and optimal irrigation (OI; set at $0.22m^3/m^3$ soil moisture contents) treatments represented 47.4 cm/plant, which was the highest among all the tested treatments. The leaf length and width showed the greatest, which were 16.1 and 2.4 cm/plant, respectively, in $A+6^{\circ}C-OI$. The physiological disorder ratio was higher as 12.9% at $A+6^{\circ}C-OI$ and was not occurred at ambient temperature with EI compared with OI treatment. The bulb and clove weight were dramatically decreased at $A+6^{\circ}C$ temperature treatment. The yields were decreased by 51% in OI at $A+6^{\circ}C$ and $A+3^{\circ}C$ temperature treatment. Those results indicated that yields were decreased and ratio of physiological disorders was increased by high temperature treatments.

Effect of Low Storage Temperature on Quality of Fresh Ginseng (저온저장 온도가 수삼의 품질에 미치는 영향)

  • Kim, Hee-Su;Kim, Gun-Hee;Kim, Dong-Man
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.459-466
    • /
    • 2011
  • To investigate optimum temperature for storage of fresh ginseng (Panax ginseng C. A. Meyer), the quality of the ginseng was compared during its storage at $-3^{\circ}C$, $-1.5^{\circ}C$ and $0^{\circ}C$. The deterioration rate of fresh ginseng stored at $-3^{\circ}C$ was the lowest for 8 weeks after storage. The rate was rapidly increased after that time and the rate at $-3^{\circ}C$ was higher than that of fresh ginseng stored at $-1.5^{\circ}C$ or $0^{\circ}C$ after the 12th week of storage. The deterioration severity of the fresh ginseng stored at $0^{\circ}C$ was much higher than that of the ginseng stored at $-1.5^{\circ}C$ and $-3^{\circ}C$. The weight loss of fresh ginseng ranged from 0.7---- to 1.6---- after 16th week; it was the lowest in the ginseng stored at $-1.5^{\circ}C$ and similar in fresh ginseng stored at $0^{\circ}C$ and $-3^{\circ}C$. The number of viable cells and molds in the fresh ginseng stored at $-3^{\circ}C$ was smaller than the fresh ginseng that was stored at other temperatures for 12 weeks, but did not differ with different storage temperatures after the 14th week of storage. The surface color of the fresh ginseng at $0^{\circ}C$ or $-1.5^{\circ}C$ was changed little while the discoloration of fresh ginseng at $-3^{\circ}C$ was relatively great. The electrolytic leakage from the rhizome of the fresh ginseng stored at $-3^{\circ}C$ was higher than that of the rhizome stored at $-1.5^{\circ}C$ and $0^{\circ}C$. The overall sensory quality of the fresh ginseng dropped below 3.0 in the S-point scale after the 10th week of storage at $-3^{\circ}C$ and after the 14th week of storage at $-1.5^{\circ}C$ and $0^{\circ}C$ (p<0.05).

Effects of Low Storing Temperature on Respiration Rate and Internal Quality of Fresh Ginseng(Panax ginseng C. A. Meyer) (저온저장 온도가 수삼(Panax ginseng C. A. Meyer)의 호흡률 및 내적 품질에 미치는 영향)

  • Kim, Hee-Su;Hong, Seok-In;Jeong, Moon-Cheol;Kim, Gun-Hee;Kim, Dong-Man
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.467-474
    • /
    • 2011
  • As a serial study to investigate optimum storing temperature of fresh ginseng (Panax ginseng C. A. Meyer), the respiration rate and internal quality of the ginseng was compared during storage for 16 weeks at $-3^{\circ}C$, $-1.5^{\circ}C$ and $0^{\circ}C$. At initial storage period, respiration rate of fresh ginseng was lower at lower temperature, but thereafter it was negligible. Changes in the firmness of fresh ginseng were not significantly different by the storage temperature. The soluble solids content in fresh ginseng was rapidly increased in the early part of storage, and fresh ginseng stored at a lower temperature had a lower content of soluble solids. The iodine-stained color for starch of the main root was rapidly changed for 4 weeks, and L value of the color was the highest in the center, followed by the cambium and the cortex. pH were a little change depending upon the storage temperature, and as a whole, pH was the lowest at $-3^{\circ}C$, followed by $-1.5^{\circ}C$ and $0^{\circ}C$. Although the content of crude saponin tended to somewhat increased as the storage period passed, the effect of storage temperature on changes in the content was not clear. In the sensory evaluation of 'unique flavor' of fresh ginseng using 5 point scale, higher than 3 point was marked for 8 weeks at $-3^{\circ}C$, 14 weeks at $-1.5^{\circ}C$ and 16 weeks at $-0^{\circ}C$ during storage (p < 0.05).

Investigation of Reliability of Automatic Cracked and Bloody Egg Detector (파각란 및 혈란 자동검란기기 검출 신뢰도 검증)

  • Noh, Jae Jung;Jeon, Seung Yeob;Park, Byeong Seck;Kim, Sun Man;Kim, Heui Soo;Kim, Hyun Joo;Jo, Cheorun
    • Food Science and Preservation
    • /
    • v.20 no.1
    • /
    • pp.69-75
    • /
    • 2013
  • This study was conducted to investigate the reliability of automatic cracked and bloody egg detector according to the age of the hens and the level of the detector. The results of this study are expected to be helpful in the implementation of the Korean egg grading system, which is expected to improve egg quality for consumers. An official egg grader randomly selected 1,000 eggs for each experiment (total 36,000 eggs), ran them through the automatic detector, and conducted labor inspection using the eggs that were classified by the detector as cracked, bloody, and normal eggs. The results showed that more cracked eggs were laid by hens aged 40-60 weeks than by hens aged 30 weeks (p<0.05). Also, when the detector level increased from four to seven (i.e., when it became less sensitive), its cracked eggs detection rate dropped, and the total rate of cracked eggs was consistent after the labor inspection of the classified eggs. The automatic detector achieved over 97 percent accuracy. The bloody eggs constituted only 0.005 percent of all the samples, and all the detector-detected eggs were bloody eggs after the labor inspection of both the bloody and normal egg lines. Therefore, it can be concluded that the automatic cracked and bloody egg detector was reliable and can be used in the egg grading system. Considering that cracked eggs should be less than 9 percent of first-grade eggs in the present egg grading system, the use of an automatic crack detector may help provide better-quality eggs to consumers by producing less than 5.5 percent cracked eggs.

Quality Characteristics of Treated with Mild Heat and Minced Ginger during Storage (열처리 조건에 따른 다진생강의 저장 중 품질특성)

  • Kim, Hee-Su;Choi, Jeong-Hee;Lee, Ho-Joon;Jeong, Moon-Cheol;Kim, Byung-Sam;Kim, Dong-Man
    • Food Science and Preservation
    • /
    • v.17 no.6
    • /
    • pp.784-792
    • /
    • 2010
  • Mild heat treatment was applied to ginger rhizomes to achieve shelf-life extension for fresh minced ginger. The rhizomes were treated at 45, 50, 55, or $60^{\circ}C$ for different periods of time, minced, and stored at $10^{\circ}C$ for 9 days. Microbial levels in minced fresh ginger decreased with increases in temperature and duration of heat treatment. The non-treated and treated samples did not significantly differ in color at the initial stage of storage. Changes in color were detected after 3 days, and accelerated after that time. The ${\Delta}E$ value of control samples reached 12.42, whereas that of treated samples (except when $45^{\circ}C$ was applied for 60 min) ranged from 7.67 to 10.96, after 9 days. There was no significant difference in initial pH value between control (pH 6.09) and treated (pH 6,046.20) samples. The pH of control samples increased to 8.02 after 9 days, whereas pH values of samples treated at $50^{\circ}C$ and $60^{\circ}C$ ranged from pH 6.807.83 after 9 days. The percentage of control drip was 25.65% at the initial stage of storage, which was lower than those of treated samples. Drip increased to 38.63% in the control and to 34.20~38.44% in treated samples after 9 days. The sensory characteristics of the control samples were similar to those of treated samples at the initial stage of storage. After 6 days, the control and some treated samples developed off-flavors and discoloration. However, samples treated at $50^{\circ}C$ for 60 min retained favorable quality characteristics for 9 days after storage.

Interpretation of Material Provenance and Production Techniques of Pottery and Kilns from Gundong and Majeon Sites in the 3rd Century at Yeonggwang, Korea (영광 군동.마전 원삼국시대 토기와 가마의 제작특성 및 태토의 산지해석)

  • Jang, Sung-Yoon;Lee, Gi-Gil;Moon, Hee-Soo;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.25 no.1
    • /
    • pp.101-114
    • /
    • 2009
  • Potsherds and kilns of the AD 3th century excavated from Gundong and Majeon sites, Korea were studied to investigate the production techniques and provenance of potsherds and kilns on the pastes. For potsherds, kilns blocks and in-situ paleo-soils, provenance of raw materials were estimated through mineralogy and geochemistry, while production technique and thermal feature of kilns were investigated through observation of textures and compositions as well as firing experiment on paleo-soils. As a result of study, potsherds and kilns were found to have similar mineralogical compositions as the neighboring paleo-soils and to have same evolution path with that of geochemistry. The potsherds were divided into 3 groups according to firing temperature and production technique. Group 1 consists of reddish stamped pattern pottery with loose textures, which has many pores and contains many iron oxides. Its temper is less than about 0.5mm, and was probably fired between 700 to $800^{\circ}C$. Group 2 contains ash to grayish blue stamped pattern pottery, which has vitrified texture and few pores. Its temper is less than about 0.5mm, and was probably fired from 900 to $1,000^{\circ}C$. However, some potsherd belongs to the group 2 in terms of features for temper and pastes, but it was probably fired over $1,100^{\circ}C$. Group 3 contains reddish and grayish stamped pattern pottery. It has vitrified matrix, few pores and temper consists of polycrystalline quartz and feldspar over 2mm, and it was probably fired around $1,000^{\circ}C$. The kiln had experienced temperature from 600 to $700^{\circ}C$ on the wall, from 900 to $1,000^{\circ}C$ on the bottom, suggesting the function of high temperature firing.

  • PDF