많은 과학 데이타처럼 화산재 확산 시뮬레이션 결과는 NetCDF 형식의 군집화된 희소행렬이다. 그리고 크기가 커서 저장과 전송에 많은 비용이 발생한다. 본 논문에서는 다차원 인덱스를 일차원으로 바꾸고 연속된 0을 그 시작점과 길이만을 기록하여 화산재 확산 시뮬레이션 데이터의 크기를 줄이는 방법을 제안한다. 이 방법은 기존의 ZIP 형식으로 압축한 것과 거의 같은 성능을 보이나 NetCDF의 구조는 손상하지 않는다. 제안된 방법에 의하면 데이터 크기가 줄어들어 저장공간의 효율이 높아지고 네트워크 전송시간이 줄어드는 효과를 기대할 수 있을 것이라 사료된다.
광대역 통신 모뎀이나 초고해상도 비디오 코덱 등과 같이 높은 데이터율을 갖는 시스템을 하드웨어로 구현할 때에는 디지털 필터의 고속 구현이 필수적이다. 디지털 필터의 임계경로는 대부분 MAC (multiplication and accumulation) 연산 회로이므로 필터 계수의 0이 아닌 비트의 갯수가 희소하다면 하드웨어 비용이 적은 덧셈기로도 디지털 필터를 고속으로 구현할 수 있다. 압축센싱은 신호의 희소 표현이나 희소 신호의 복원에 우수한 성능을 보임이 최근 연구에서 보고되고 있다. 본 논문에서는 압축센싱에 기반한 디지털 FIR 필터의 CSD (canonic signed digit) 계수를 찾는 방법을 제안한다. 주어진 주파수 응답과의 오차를 최소하면서 탐욕적 방법으로 희소한 0이 아닌 부호자리수를 찾고 잘못 선택되었던 부호자리수는 제거하는 과정을 반복한다. 설계 예를 통해 제안된 방법으로 희소한 0이 아닌 CSD 계수의 FIR 필터를 설계할 수 있음을 보인다.
본 논문에서는 이미지를 시각적 단어로 표현하여 분석하는 기법인 bag-of-visual words (BoW) 모델을 기반으로 latent dirichlet allocation (LDA) 모델을 결합하여 시각적 단어의 구조를 파악하여 이미지를 분류할 수 있는 모델을 제안한다. 우선 이미지를 시각적 단어로 기존의 방법보다 정확하게 표현하기 위해서 희소 부호화(sparse coding) 기법을 적용한다. 기존의 BoW 모델은 하나의 이미지 패치를 하나의 단어로 표현하였지만, 희소 부호화 기법을 통해 하나의 이미지 패치를 여러 개의 단어로 표현할 수 있다. 제안하는 모델을 이용하여 이미지를 분류하기 위해서 분류 성능 측정에 많이 쓰이는 multi-class SVM 기법을 이용한다. UIUC 스포츠 데이터를 이용한 성능 측정을 통해 제안한 기법의 클래스 분류 성능을 검증하였다.
모바일 노드를 이용하여 넓은 범위를 센싱하기 위해서는 노드 배치의 균일성이 매우 중요한 이슈 중 하나이다. 본 논문에서는 희소 모바일 애드 혹 네트워크 환경에서 빅 데이터 센싱을 위한 커버리지 문제에 대한 주제를 다룬다. 커버리지 문제에 관한 기존 연구에서는 넓은 범위를 센싱하기 위해 노드의 수가 충분히 많은 환경을 가정하였다. 하지만 희소 모바일 애드 혹 네트워크 환경에서 센서 커버리지 문제는 노드들 간의 센싱 범위가 겹치는 범위를 최소화하기 위해 노드들 간의 거리가 충분히 멀어야 한다. 따라서 본 논문에서는 희소 모바일 애드 혹 네트워크 환경에서 센서 커버리지 문제를 정의하고 중앙 중재자 없이 자가 조직의 방식에 의한 해결 방안을 제시한다. 실험 결과를 통해 제안하는 방식은 커버리지 영역과 에너지 소비 관점에서 효율적임을 보인다.
개체군 희소 지표는 인공 신경망을 구성하고 있는 내부 레이어의 동작을 뉴런의 관점에서 관찰할 수 있기 때문에 블랙박스로 불리는 인공 신경망 내부의 동작을 설명하기 위하여 활용될 수 있다. 최근의 연구에서는 개체군 희소 지표를 두 종류의 컨벌루션 신경망 모델 분석에 적용하여, 레이어의 층이 깊어질수록 지표 값이 비례하여 증가하는 것이 관찰되었음을 보고하였다. 또한, 영상 분류를 위한 컨벌루션 신경망 모델에서 개체군 희소성 지표와 성능이 양의 상관성을 보인다는 연구도 있다. 본 연구에서는 적대적 예제가 컨벌루션 신경망에 적용되었을 때 신경망 내부에서 어떠한 동작이 수행되는지에 대하여 관찰하였다. 이를 위하여 적대적 예제를 입력으로 하는 컨벌루션 신경망의 개체군 희소 지표를 구한 다음, 컨벌루션 신경망의 성능과의 상관성을 비교하였다. 실험의 결과로부터 사전에 5%의 정확도를 갖도록 변형된 적대적 예제들에 대하여 온건한 데이터를 적용한 경우와 유사한 패턴의 양의 상관성을 갖는 것을 확인할 수 있었다. 이 실험결과는 적대적 예제와 온건한 데이터에 대한 각각의 개체군 희소성 지표 값들이 거시적인 관점에서 차이가 없다는 것을 의미하며 적대적 예제가 뉴런의 활성화 측면에서부터 적대적으로 동작한다는 것을 의미한다.
질문에 답하기 위해 관련 구절을 검색하는 기술은 오픈 도메인 질의응답의 검색 단계를 위해 필요하다. 전통적인 방법은 정보 검색 기법인 빈도-역문서 빈도(TF-IDF) 기반으로 희소한 벡터 표현을 활용하여 구절을 검색한다. 하지만 희소 벡터 표현은 벡터 길이가 길 뿐만 아니라, 질문에 나오지 않는 단어나 토큰을 검색하지 못한다는 취약점을 가진다. 밀집 벡터 표현 연구는 이러한 취약점을 개선하고 있으며 대부분의 연구가 영어 데이터셋을 학습한 것이다. 따라서, 본 연구는 한국어 데이터셋을 학습한 밀집 벡터 표현을 연구하고 여러 가지 부정 샘플(negative sample) 추출 방법을 도입하여 전이 학습한 모델 성능을 비교 분석한다. 또한, 대화 응답 선택 태스크에서 밀집 검색에 활용한 순위 재지정 상호작용 레이어를 추가한 실험을 진행하고 비교 분석한다. 밀집 벡터 표현 모델을 학습하는 것이 도전적인 과제인만큼 향후에도 다양한 시도가 필요할 것으로 보인다.
APU(Accelerated Processing Unit)는 CPU와 GPU가 통합되어있는 프로세서이며 같은 메모리 공간을 사용한다. CPU와 GPU가 분리되어있는 기존 이종 컴퓨팅 환경에서는 GPU가 작업을 처리하기 위해 CPU에서 GPU로 메모리 복사가 이루어졌지만, APU는 같은 메모리 공간을 사용하므로 메모리 복사 없이 가상주소 할당으로 같은 물리 주소에 접근할 수 있으며 이를 Zero Copy라 한다. Zero Copy 성능을 테스트하기 위해 희소행렬 연산을 사용하였으며 기존 메모리 복사대비 크기가 큰 데이터는 약 4.67배, 크기가 작은 데이터는 약 6.27배 빨랐다.
실세계 네트워크 데이터에서 노드들 간의 관계는 종종 친구/적 혹은 지지/반대와 같이 대조적인 부호를 갖는다. 이러한 네트워크를 분석하기 위해, 부호가 있는 네트워크 임베딩 (signed network embedding, 이하 SNE) 문제에 대한 관심이 급증하고 있다. 특히, 최근 들어 그래프 합성곱 네트워크 기술을 기반으로 하는 SNE 방법들에 대한 연구가 활발히 수행되어 오고 있다. 본 논문에서는, 부호가 있는 네트워크의 희소성 정도가 기존 SNE 방법들의 성능에 어떻게 영향을 미치는 지에 대해 분석하고자 한다. 4 개의 실세계 데이터 집합들을 이용한 실험을 통해, 우리는 기존 방법들의 부호 예측 정확도가 희소한 네트워크들에서는 상당히 감소하는 것을 확인하였다.
최근 변종 악성코드가 증가하면서 사이버 해킹 침해사고 규모가 확대되고 있다. 그리고 지능형 사이버 해킹 공격에 대응하기 위해 악성코드 패밀리를 효과적으로 분류하기 위한 기계학습 기반 연구가 활발히 진행되고 있다. 그러나 기존의 분류 모델은 데이터셋이 난독화되거나, 희소한 경우에 성능이 저하되는 문제가 있었다. 본 논문에서는 ASM 파일과 BYTES 파일에서 추출한 특징을 결합한 하이브리드 데이터셋을 제안하고, FNN을 사용하여 분류 성능을 평가한다. 실험 결과에 따르면 제안하는 방법은 단일 데이터셋에 비해 약 4% 향상된 성능을 보였으며, 특히 희소한 패밀리에 대해서는 약 30%의 성능 향상을 보였다.
열린 집합 인식 방법론은 테스트 데이터의 클래스를 학습 시에 모두 파악할 수 없는 경우에 대한 인식 방법론이다. 따라서 열린 집합 인식 방법론은 분류와 유효성 검증의 절차를 필요로 한다. 이러한 연구는 얼굴 인식 모듈의 상용화를 위해 필수적이지만 지금까지 국내에서 연구 결과들이 거의 발표되지 않았다. 우리는 두 개의 검증 단계를 가지는 열린 집합 얼굴 인식 방법론을 제안한다. 첫 번째 단계에서는 학습 클래스 외에 더미 클래스들을 설정하고 희소표현 기반 분류를 수행한다. 이 때 테스트 데이터가 더미 클래스로 분류되면 무효 데이터로 판별하고, 유효한 클래스로 분류되면 다음 유효성 검증 단계로 넘어간다. 두 번째 단계에서 제안하는 네 가지 특징을 추출하고, 확률분포에 기반을 둔 판별함수를 통해 유효성 검증을 수행한다. 우리는 실험을 통해 열린 집합 인식 방법론의 시뮬레이션 방법을 제안하였고 제안하는 방법론의 성능을 제시하고, 희소기반 분류 방식에서 널리 사용되는 SCI 지표를 이용한 유효성 테스트보다 높은 성능을 보임을 입증할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.