• Title/Summary/Keyword: 흡장

Search Result 71, Processing Time 0.042 seconds

Relationship between characteristics of BET and NSR kinetics by the effect of iron oxide addition (Fe첨가에 따른 BET와 NSR흡장-환원 특성간의 관계)

  • Jeon, Ji-Yong;Na, Hyun-Jun;Kim, Jin-Gul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.1050-1053
    • /
    • 2009
  • 상용화 되고 있는 Pt/BaO/$Al_2O_3$촉매에 Iron을 첨가량에 따른 흡장량의 증가를 알아내기 위한 실험을 실행하였다. $SO_2$를 포함하고 있는 배기가스중의 NOx를 제거하기 위해 SOx 존재 하에서 Pt/Co/BaO/$Al_2O_3$촉매에 Iron량을 증감하여 흡장량을 비교분석하였으며, 10%에서 높은 흡장 면적을 나타내었다. XRD와 BET 결과 고온 소성시 흡장량 감도는 Pt의 열화 소결이 원인인 것으로 나타난다.

  • PDF

Effect of Phase Change of $MoO_3$ on $H_2$ Spillover Kinetics over Pt/$MoO_3$ (Pt/$MoO_3$ 촉매에서 $MoO_3$ 상변화가 수소 spillover에 미치는 효과)

  • Kim, Jin-Gul;Kim, Seong-Soo;Yoo, Seung-Joon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.331-336
    • /
    • 2009
  • 수소가 Pt/$MoO_3$로 흡장되는 현상을 XRD, TEM, CO 화학흡착 분석방법을 사용하여 조사하였다. 소성과정은 Pt/$MoO_3$ 촉매의 Chlorine 함유량을 감소하며 박막을 형성하였다. 소성전과 비교하여 수소 흡장량은 소성 후에 증가하였다. Orthorhombic Pt/$MoO_3$은 Hexagonal Pt/$MoO_3$보다 항상 수소 흡장량이 증가하였다. 상대적으로 Hexagonal Pt/$MoO_3$에서 수소 흡장량이 감소하는 이유는 Hexagonal 결정격자 내에 존재하는 $NH_4^+$ 이온에 기인하는 것으로 판단된다. 결정격자 내부로의 수소 침투시 암모니움 이온이 수소내부 기공에 장애물 역할을 하므로, 수소 흡장량이 감소하는 것으로 판단된다.

Study of NO Storage and Reduction on LNT by Micro Bench-Flow Reactor (마이크로 벤치-플로우 리액터를 이용한 LNT 촉매의 NO 흡장과 정화성능에 관한 연구)

  • Yoon, Joo-Wung;Hwang, Seung-Kwon;Hwang, In-Goo;Park, Sim-Soo;Lee, Jin-Ha;Yeo, Gwon-Koo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.789-798
    • /
    • 2011
  • We carry out an experimental investigation to analyze the basic performance of NO(nitric oxide) storage in a lean phase and also analyze the NO reduction achieved by the spraying of reducing agents in the rich phase of the exhaust gas in an LNT(Lean NOx Trap). This is an after-treatment system used to reduce the NOx emissions from a diesel engine. If the stored NO is reduced, we measure the outlet concentration downstream of the LNT. The test LNT material used in the experiments is commercial LNT. After being canned into stainless-steel(SUS304), it was built in a micro bench-flow reactor. Compositions of feed gases, three heated and three no heated gases were sprayed upstream of the LNT to analyze the characteristics. We use various temperatures and space velocities as response variables.

Adsorption of Nitrogen Dioxide on Transition-Metal-Oxide-Incorporated Hydrotalcites (전이금속 산화물이 고정된 하이드로탈사이트에 이산화질소 흡착)

  • Park, Ji Won;Seo, Gon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1029-1038
    • /
    • 2008
  • Transition-metal-oxide-incorporated hydrotalcites were prepared by hydrothermal reaction of their synthetic mixtures containing precursors of transition metal oxides and their properties of nitrogen dioxide adsorption was investigated. The dispersion of transition metal oxides on the hydrotalcites and the amount and the state of nitrogen dioxide adsorbed on them were examined by using XRD, SEM, XPS, nitrogen adsorption, a gravimetric adsorption system, FT-IR spectroscopy and temperature programmed desorption techniques. Transition metal oxides were mainly incorporated on their surface and the incorporation of iron and nickel oxides to the hydrotalcites increased their adsorption amounts of nitrogen dioxide. The dispersion of iron oxide on the hydrotalcites was effective in increasing the amount of nitrogen dioxide adsorption, while too much amount of iron oxide incorporation reduced the amount of nitrogen dioxide adsorption due to masking of surface basic sites by agglomerated iron oxide. Although the incorporation of iron oxide to the hydrotalcites lowered the adsorption strength of nitrogen dioxide, the incorporation of it with a proper amount enhanced the amount of nitrogen dioxide adsorption and the stability against the hydrothermal treatment.

Control Oriented Storage and Reduction Modeling of the Lean NOx Trap Catalyst (제어를 위한 Lean NOx Trap의 흡장 및 환원 모델링)

  • Lee, Byoungsoo;Han, Manbae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.60-66
    • /
    • 2014
  • A control oriented model of the Lean $NO_x$ trap (LNT) was developed to determine the timing of $NO_x$ regeneration. The LNT model consists of $NO_x$ storage and reduction model. Once $NO_x$ is stored ($NO_x$ storage model), at the right timing $NO_x$ should be released and then reduced ($NO_x$ reduction model) with reductants on the catalyst active sites, called regeneration. The $NO_x$ storage model simulates the degree of stored $NO_x$ in the LNT. It is structured by an instantaneous $NO_x$ storage efficiency and the $NO_x$ storage capacity model. The $NO_x$ storge capacity model was modeled to have a Gaussian distribution with a function of exhaust gas temperature. $NO_x$ release and reduction reactions for the $NO_x$ reduction model were modeled as Arrhenius equations. The parameter identification was optimally performed by the data of the bench flow reactor test results at space velocity 50,000/hr, 80,000/hr, and temperature of $250-500^{\circ}C$. The LNT model state, storage fraction indicates the degree of stored $NO_x$ in the LNT and thus, the timing of the regeneration can be determined based on it. For practical purpose, this model will be verified more completely by engine test data which simulate the NEDC transient mode.

Hydrogen Isotope Effects in Hydrogen Storage Alloy for Separation and Concentration of Hydrogen Isotopes (수소 동위체의 분리농축을 위한 수소저장합금의 수소 동위체 효과)

  • Cho, Sung-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.4
    • /
    • pp.327-334
    • /
    • 2003
  • 경수소와 중수소를 사용하여 Ti1.0Mn0.9V1.1합금의 경우 313K와 353 K에서, $Ti_{1.0}Cr1.5V_{1.1}$합금의 경우 313 K와 338K에서 각각 수소 동위체 효과를 조사하였다. 합금의 결정구조, 각 상의 존재량, 격자상수 등은 Rietveld method에 의해 결정되었다. 두 합금 모두 용도에 관계 없이 중수소의 흡장량이 경수소에 비하여 많았고, 이들 합금의 수소 동위체 효과는 LaNis 합금에 비하여 대단히 크게 나타났다. 실험 온도 범위에서 $Ti_{1.0}Mn_{0.9}V_{1.1}$합금의 경수소화물은 중수소화물에 비하여 안정하였고, Ti1.0Cr1.5V1.7합금에 있어서는 중수소화물이 더욱 안정하였다. 또한 $Ti_{1.0}Cr_{1.5}V_{1.7}$합금이 $Ti_{1.0}Mn_{0.9}V_{1.1}$합금보다 많은 량의 경수소와 중수소를 흡장하였다.

Effects for Coexistent Reductant to NOx Adsorption and Desorption of the NOx Storage Catalyst (공존 환원제가 NOx 흡장촉매의 NOx 흡$\cdot$ 탈착에 미치는 영향)

  • Lee, Choon-Hee;Choi, Byung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.181-187
    • /
    • 2005
  • The behavior of fox adsorption and desorption of the NOx storage catalyst supported on Ba additive were studied by the TPA/TPD experiments and reactivity tests. Applying the transient responses and NOx TPA/TPD test by CLD were effective methods to analyze the characteristics of the NOx storage catalyst. NOx variation of the NOx storage catalyst in the lean air/fuel conditions according to temperature was dominated by NOx adsorption and desorption rather than catalytic reduction. The presence of reductants in the lean mixture promoted the NOx desorption at the $500^{\circ}C$ higher temperature. The temperatures for maximum NOx conversion with CH4 and $C_3H_6$ as a rich spike reductant appear around $500^{\circ}C\;and\; 400^{\circ}C$ respectively.