• Title/Summary/Keyword: 흡음 처리

Search Result 26, Processing Time 0.024 seconds

Changes of Sound Absorption Capability and Anatomical Features of Wood by Delignification Treatment (탈리그닌처리에 의한 목재의 흡음성능과 구조적 특징의 변화)

  • Kang, Chunwon;Lee, Namho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.4 s.132
    • /
    • pp.9-14
    • /
    • 2005
  • Changes of sound absorption capability and anatomical features of wood by delignification treatment was estimated. Sound absorption coefficients of wood and delignificated wood had been measured by the two microphone method and anatomical changes of delignificated wood examined by SEM observation. The sound absorption coefficients of delignificated wood generally seemed to be higher than those of normal specimen. Especially, in the frequency range of 2 to 4 KHz, they was about 50% higher than those of normal specimen. Abundant small cracks generated on the cross sectional surface of delignificated wood and the weight of delignificated wood decreased about 8% than that of normal wood. It was considered that the small cracks formed by delignification treatment behaved as a sound absorbing pore.

An Experimental Study on Sound Absorption characteristics of Porous Materials (다공성 흡음재의 흡음률에 영향을 주는 요소에 관한 고찰)

  • 김현태
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.53-56
    • /
    • 1998
  • 다공성흡음재의 흡음률에 미치는 요소를 실험을 통하여 알아보았다. 흡음재의 두께, 밀도, 공기층, 표면처리, 흡음재의 조합 등에 따른 흡음률의 변화를 측정하였다. 공기층을 두고 시공하면 저역.중역에서의 흡음률이 현저히 증가하며, 유공판, 판상흡음재 등과 적절히 조합하면 보다 넓은 범위에서 좋은 흡음률을 갖게 됨을 알 수 있다. 또한 최대흡음률을 갖는 두께가 λ/4로 예상되지만, 흡음재의 구조에 따라 음의 경로의 유효길이가 늘어나 그보다 작은 두께일 것으로 예상된다.

  • PDF

Effect of Flame Resistant Treatment on The Sound Absorption Capability of Sawdust-mandarin Peel Composite Particleboard (방염처리가 톱밥-귤박 혼합파티클보드의 흡음성능에 미치는 영향)

  • Kang, Chunwon;Jin, Taiquan;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.511-517
    • /
    • 2015
  • Sound absorption capability of the flame resistant treated sawdust-mandarin peel composite particleboard was were estimated by two microphone transfer function methods. The weight of flame resistant treated board slightly increased by the treatment. The treatment improved fire retardant performance by decreasing the charred area of flame resistant treated board. Sound absorption capabilities of flame resistant treated sawdust-mandarin peel composite particleboard, in the entire estimated frequency range of 500-6,400 Hz was slightly lower than those of the control specimen. Sound absorption capability of both the control and flame resistant treated sawdust-mandarin peel composite particleboards were higher than that of commercial gypsum boards, being widely used as a sound absorber for ceiling at the estimated frequency.

Radial Variation of Sound Absorption Capability in the Cross Sectional Surface of Yellow Poplar Wood (백합나무 횡단면 흡음성능의 방사방향 변이)

  • Kang, Chun-Won;Lee, Youn-Hun;Kang, Ho-Yang;Kang, Wook;Xu, Huiran;Chung, Woo-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.326-332
    • /
    • 2011
  • Radial variation of sound absorption capability and air permeability of yellow poplar (Liriodendron tulipifera) wood in cross sectional surface and effect of steam explosion treatment were estimated by the two microphone transfer function method and the capillary flow porometry, respectively. The sound absorption coefficients of steam explosion treated wood was higher than those of control wood and these values increased with frequency. Abundant and big vessel may behave as sound absorbing pore observed on the cross sectional surface of yellow poplar wood. The sound absorption coefficients and air permeability of sapwood were higher than those of heartwood for Liriodendron tulipifera.

Developing of Sound Absorption Composite Boards Using Carbonized Medium Density Fiberboard (탄화 중밀도섬유판을 이용한 목재흡음판 개발)

  • Lee, Min;Park, Sang-Bum;Byeon, Hee-Seop;Kim, Jong-In
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.714-722
    • /
    • 2014
  • In the previous study, a variety of wood-based panels was thermally decomposed to manufacture carbonized boards that had been proved to be high abilities of insect and fungi repellence, corrosion and fire resistant, electronic shielding, and formaldehyde adsorption as well as sound absorption performance. Based on the previous study, carbonized medium density fiberboard (c-MDF) was chosen to improve sound absorption performance by holing and sanding process. Three different types of holes (cross shape, square shape, and line) with three different sanding thickness (1, 2, and 3 mm) were applied on c-MDF and then determined sound absorption coefficient (SAC). The control c-MDF without holes had 14% of SAC, however, those c-MDFs with holes had 16.01% (square shape), 15.68% (cross shape), and 14.25% (line) of SAC. Therefore, making holes on the c-MDF did not significantly affect on the SAC. As the degree of sanding increased, the SAC of c-MDF increased approximately 65% on sanding treated c-MDFs (21.5, 21.83, and 19.37%, respectively) compared to the control c-MDF (13%). Based on these results, composite sound absorbing panel was developed with c-MDF and MDF (11 mm). The noise reduction coefficient of composite sound absorbing panel was 0.45 which was high enough to certify as sound absorbing material.

A method of wall absorption treatment for enhancing the speech intelligibility at a directional microphone array in a room (실내 공간 내 지향성 마이크 어레이에서의 음성 명료도 개선을 위한 벽면 흡음 처리 방법)

  • Ko, Byeong-Yun;Ih, Jeong-Guon;Cho, Wan-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.649-659
    • /
    • 2021
  • Wall absorption treatment effectively reduces reverberation, but requires a large area for a live room and each wall absorption affects speech intelligibility differently. In this study, we try to find the most effective wall for the absorption treatment using the beamforming array microphone in terms of speech intelligibility. The absorption importance factor is defined by using the collision number of reflected sounds on each wall. It allows estimating how much the speech signal will be enhanced by the absorption treatment. A cuboid room with a size of 107 m3 and a reverberation time of 1.1 s is selected for the simulation. When a Helmholtz-type absorption is treated on the wall with the most significant importance factor, the modified clarity for 500 and 1k Hz is improved by 5.1 dB and 4.8 dB respectively, and the speech transmission index is enhanced by 0.06. The difference in results between the proposed method and commercial simulation code is less than a Just-Noticeable Difference (JND). The absorption treatment on the wall with the most significant importance factor shows improvement greater than the wall with the largest area, and its difference is larger than a JND value.

Study on Air Absorption Processing for Spatial Audio Rendering (공간음향 렌더링을 위한 공기흡음 처리에 관한 연구)

  • Daeyoung Jang;Yong Ju Lee;Jae-hyoun Yoo;Kyeongok Kang;Tae Jin Lee
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.18-21
    • /
    • 2022
  • 본 논문에서는 6 자유도 공간음향 렌더링 기술 관련 음향객체의 거리감 인지에 중요한 공기흡음 감쇠 효과 처리에 있어, 현장의 음원과 음향 센서 사이의 거리인 녹음거리에 해당하는 공기흡음 감쇠가 기본적으로 포함되어 3kHz 이상의 고주파 성분이 감쇠된 음원이 렌더링에 사용되는 문제점을 해결하는 방법을 제시한다. 이 방법에 의하면 6 자유도 공간음향 콘텐츠에 메타데이터로서 녹음거리 파라메터를 포함시키고, 렌더링할 때 공기흡음을 적용하기 위한 음원과 청취자의 거리값에 녹음거리에 대한 보상을 적용함으로써, 음원의 공기흡음 감쇠 효과를 정확하게 수정 적용하여 음원의 음색을 모든 거리에서 실제에 가깝도록 제공할 수 있게 된다. 특히, 원거리 녹음이 불가피한 비행기, 천둥, 폭발음 등 원거리 녹음음원의 음색에 녹음거리에 의한 음원의 공기흡음 감쇠가 적지 않은 영향을 미치게 되는데, 녹음거리의 적용에 의한 제안한 방법에 의해 음원과 청취자의 거리값에 대한 음원의 음색이 고주파영역의 녹음거리에 의한 원치 않는 감쇠를 보상하는 효과를 확인할 수 있었다.

  • PDF

Sound Absorption Capability and Anatomical Features of Oak Mushroom Bed Log (버섯폐골목의 흡음성능과 구조적 특징)

  • Kang, Chunwon;Kang, Wook;Jeong, Insoo;Park, Heejun;Jun, Sunsik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.54-60
    • /
    • 2008
  • Sound absorption coefficients of oak (Quercus mongolica) wood and oak mushroom bed log were measured by the two microphone transfer function method and anatomical features of oak mushroom bed log examined by stereo scope and SEM observations. The sound absorption coefficients of oak mushroom bed log seemed to be higher than those of normal oak wood specimen over all estimated frequency range. Especially, in the frequency range of 2 to 6 kHz, they were about 2~3 times higher than those of normal wood specimen. Due to fungi degradation, the specific gravity of oak mushroom bed log decreased about 70% than that of normal wood. For oak mushroom bed log, abundant pores occurred on the radial, tangential and cross sectional surface and it was considered that the pores behaved as a sound absorbing pore.

Changes of Sound Absorption Capability of Wood by Organosolv Pretreatment (유기용매 전처리에 의한 목재의 흡음성능 변화)

  • Kang, Chun-Won;Choi, In-Gyu;Gwak, Ki-Seob;Yeo, Hwan-Myeong;Lee, Nam-Ho;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.237-243
    • /
    • 2012
  • Sound absorption capability and anatomical features of the organosolv pretreated Japanese larch and yellow poplar wood were estimated by stereoscopic observation and two microphone transfer function method. Sound absorption capabilities of organosolv treated wood, in the entire estimated frequency range (50~6,400 Hz), were higher than those of control specimen. Especially, the treated wood's absorption capabilities measured in the frequency range of 2~4 kHz were about two times higher than those of control specimen. By the organosolv pretreatment (at $70{\sim}120^{\circ}C$), the weight loss of wood occurred in less than 1% of total weight of wood and the porosity of wood increased slightly. In addition, it was presupposed that microstructural changes of wood occurred during organosolv pretreatment and this structural changes cause the increasing of the sound absorption capability of wood.

Effect of Heat Treatment on the Gas Permeability, Sound Absorption Coefficient, and Sound Transmission Loss of Paulownia tomentosa Wood (참오동나무의 열처리가 기체투과성, 흡음율과 음향투과손실에 미치는 영향)

  • KANG, Chun-Won;JANG, Eun-Suk;JANG, Sang-Sik;Cho, Jae-Ik;KIM, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.644-654
    • /
    • 2019
  • In this study, the gas permeability, sound absorption coefficient, and sound transmission loss of the Paulownia tomentosa wood were estimated using capillary flow porometry, transfer function method, and transfer matrix method, respectively. The longitudinal specific permeability constant of the Paulownia tomentosa wood with a thickness of 20 mm was 0.254 for the control sample and 0.279, 0.314, and 0.452 after being subjected to heat treatments at $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$, respectively. The gas permeability was observed to be slightly increased by the heat treatment. The mean sound absorption coefficients of 20-mm thick Paulownia tomentosa log cross-section for the control sample and after being subjected to heat treatments at $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$ were 0.101, 0.109, 0.096 and 0.106, respectively. Further, the noise reduction coefficients of 20-mm thick Paulownia tomentosa log cross-section of the control sample and after being subjected to heat treatment at temperatures of $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$ were 0.060, 0.067, 0.062 and 0.071, respectively. The mean of sound transmission loss of the 20-mm thick Paulownia tomentosa log cross-section was approximately 36.93 dB. Furthermore, the gas permeability and sound absorption coefficient of the heat-treated Paulownia tomentosa discs slightly increased depending on the heat treatment temperature; however, the rate of increase was insignificant.