• Title/Summary/Keyword: 흡기포트

Search Result 78, Processing Time 0.043 seconds

Research on tumble and flow analysis in cylinder for marine engine (선박엔진내 유동의 텀블 및 거동해석에 관한 연구)

  • Lee, Byoung-Hwa;Seol, Dong-Il;Jang, Young-June;Jeon, Chung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3306-3310
    • /
    • 2007
  • Many researches have been studied on in-cylinder flow as one of dominant effects for an engine combustion. Specially because the combustion flame speed is mainly determined by the turbulence at the end of compression process. Tumble and Turbulence ahead of combustion is very important phenomenon. As this phenomenon make research certainly, combustion condition will effectively be improve. This paper describes analytical results of the tumble flow, intensity, turbulence inside the cylinder of maritime engine. 3-D computation has been performed by using STAR-CD v3.26 solver and es-ice

  • PDF

An Experimental Study on the characteristic of Exhaust Emissions and the Engine Performacne with Intake Port Water Injection in Diesel Engine (흡기 포트 내 물 분사에 의한 디젤 기관의 배기 유해물 배출 및 기관 성능 변화에 관한 실험적연구)

  • 김기형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 1999
  • This study was carried out to reduce NOx emissions from diesel engine and to investigate the variation of engine performance using the water injection. In this study the water was extracted from the exhaust gas and injected directly into the intake port with the inlet charge. The water condensing system operated as a closed system without any supplementary water supply. The experimental parameters such as the revolution the torque and the water injection rate are varied and the result from this experiment found the significant NOx reduction whereas the smoke emission increases as water/air ratio increases as the cases like the EGR. In spite of increasing the quantity of the water injection the engine output was slightly decreased and the specific fuel consumption was increased as was anticipated. Especially the system was founded to be effective on the reduction of the NOx emissions at the high load region relatively.

  • PDF

A study on the Development of CNC Lathe for Noncircular Cutting (비진원 가공용 CNC 선반 개발에 관한 연구)

  • 김경석;양승필;김성식;정현철;김정호;이도윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.45-51
    • /
    • 1995
  • 자동차 엔진의 피스톤은 핀 구멍의 복잡한 형상과 2사이클 엔진의 경우 실린더쪽 흡기 및 배기 포트의 위치에 따라 균일하지 않은 열이나 응력 등의 영향에 의한 변형을 고려하여, 상온에서의 형상이 각종 평가 시험을 거쳐 엔진마다 다양한 형상을 갖는 피스톤으로 결정된다. 본 연구에서는 컴퓨터 제어에 의한 방법으로서 타원형상을 갖는 임의의 피스톤을 고속, 고정도로 가공할 수 있는 CNC(Computer Numerical Control)선반 개발에 관하여 연구 하였다. 피스톤 데이터를 퍼스널 컴퓨터로 입력하고 CNC 제어하므로 마스터캠의 제작 불필요, Recess 등과 같은 미세가공 가능, 피스톤의 형상변경 용이, 고속가공 등으로 모방절삭 방식보다 훨씬 높은 생산성 향상이 기대된다.

  • PDF

Study on the Performance Characteristics for the Gasoline Engine of Hybrid Automotive (하이브리연 자동차용 가솔린엔진 연료공급 특성연구)

  • Lee, Sang-In;Lee, Sung-Won;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.539-542
    • /
    • 2009
  • 본 연구은 자동차용 가솔린엔진에 장착되는 인젝터의 연료공급 특성에 대한 것으로, 4홀과 12홀 인젝터의 분무질량분포, 벽류 및 가시화 실험을 수행하였다. 분무질량분포 실험을 통하여 인젝터 별 분무특성을 파악하고, 벽류측정실험을 통하여 흡기포트내의 연료 Wetting 특성을 확인하였다. 가시화실험을 통하여 분사각과 분무특성을 비교 분석하였다. 4홀과 12홀 인젝터의 분무특성비교를 통한 각 인젝터의 연료공급 특성분석은 가솔린엔진 설계시 기초자료로 활용될 수 있을 것이다.

  • PDF

Effects of Intake Port Swirl and Fuel Injection System on the Performance and Exhaust Emissions in a Turbocharged DI Diesel Engine (터보 차져 DI 디젤엔진에 있어서 성능 및 배기배출물에 미치는 흡기 포트 선회 유동 및 연료 분사계의 성능)

  • Yoon, Jun-Kyu;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.45-53
    • /
    • 2005
  • The purpose of this study is to analyze that intake port swirl and fuel injection system have an effect on the engine performance in a turbocharged D.I. diesel engine of the displacement 9.4L. As result of steady flow test, when the valve eccentricity ratio moved to cylinder wall, the flow coefficient and swirl intensity is increased. And as the swirl is increased, the mean flow coefficient is decreased, whereas the Gulf factor is increased. Through this engine test, it can be expected to meet performance and emissions by the following applied parameters; the swirl ratio is 2.43, injection timing is BTDC 13oCA and compression is 15.5.

  • PDF

Analysis of In-Cylinder Flow Characteristics of a High Speed D.I. Diesel Engines (고속 직접분사식 디젤 엔진의 실린더내 유동 해석)

  • Park, Sang-Chan;Ryu, Jae-Deok;Lee, Gi-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1276-1283
    • /
    • 2002
  • Recently, HSDI (High Speed Direct Injection) diesel engine has been spotlighted as a next generation engine because it has a good potential for high thermal efficiency and fuel economy. This study was carried out to investigate the in-cylinder flow characteristics generated in a 4-valve small diesel cylinder head with a tangential and helical intake port. The flow characteristics such as coefficient of flow rate(Cf), swirl ratio (Rs), and mass flow rate (ms) were measured in the steady flow test rig using the impulse swirl meter and the analysis of in-cylinder flow field was conducted by experiment using the PIV and calculation using the commercial CFD code. As the results from steady flow test indicate, the mass flow rate of the cylinder head with a short distance between the two intake ports is increased over 13% than that of the other head. However, the non-dimensional swirl ratio is decreased approximately 15%. From in-cylinder flow characteristics obtained by PIV and CFD calculation, we found that the swirl center was eccentric from the cylinder center and the velocity distribution became uniform near the TDC. In addition, the results of the calculation are good agreement with the experimental results.

Effects of Swirl and Combustion Parameters on the Performance and Emission in a Turbocharged D.1. Diesel Engine (선회유동 및 연소인자가 터보과급 디젤엔진의 성능 및 배기가스특성에 미치는 영향)

  • 윤준규;차경옥
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.90-98
    • /
    • 2002
  • The effects of swirl and combustion parameters on the performance and emission in a turbo-charged D.I. diesel engine of the displacement 9.4L were studied experimentally in this paper. Generally the swirl in the combustion process of diesel engine promotes mixing of the injection fuel and the intake air. It is a major factor to improve the engine performance because the fuel consumption and NO$_{x}$ is trade-off according to the high temperature and high pressure of combustion gas in a turbocharged D.I. diesel engine, it's necessary to thinking over the intake and exhaust system, the design of combustion bowl and so on. In order to choose a turbocharger of appropriate capacity. As a result of steady flow test, when the swirl ratio is increased, the mean flow coefficient is decreased, whereas the gulf factor is increased. Also, through engine test its can be expected to meet performance and emissions by optimizing the main parameter's; the swirl ratio is 2.43, injection timing is BTDC 13$^{\circ}$ CA, compression ratio is 16, combustion bowl is re-entrant 5$^{\circ}$, nozzle hole diameter is $\Phi$0.28*6, turbocharger is GT40 model which are compressor A/R 0.58 and turbine A/R 1.19.

Study on the Optimal Injection Condition for HC-LNT Catalyst System for Diesel Engines with a Gasoline PFI Type Injector (가솔린 인젝터를 디젤엔진용 HC-LNT 촉매에 적용하기 위한 최적 분사 조건에 관한 연구)

  • Oh, Jung-Mo;Mun, Woong-Ki;Kim, Ki-Bum;Lee, Jin-Ha;Lee, Ki-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • NOx (Nitrogen Oxide) reduction system periodically needs a rich or stoichiometric operating condition to reduce NOx. A new method that optimizes the control of external HC injection into a diesel exhaust pipe for HC-type LNT (Lean NOx Trap) catalyst system has been developed. In this paper, these catalysts are called HC-LNT catalysts. The concentration and amount of HC can be controlled by controlling the external injection. In this study, we investigated the relationship between the spray behavior of hydrocarbons injected into the transparent exhaust pipe and NOx reduction characteristics. From the results of this experiment, we obtained useful information about the optimum injection and position of HC injector to the exhaust pipe. Further, we obtained useful information about the optimal injection condition for an HC-LNT catalyst system with a gasoline PFI (port fuel injection) typeinjector.

Study on Performance and Emission Characteristics of CNG/Diesel Dual-Fuel Engine (CNG/Diesel 이종연료용 엔진의 성능 및 배출가스 특성에 대한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.869-874
    • /
    • 2011
  • In a CNG/diesel dual-fuel engine, CNG is used as the main fuel and a small amount of diesel is injected into the cylinder to provide ignition priming. In this study, a remodeling of the existing diesel engine into a CNG/diesel dual-fuel engine is proposed. In this engine, diesel is injected at a high pressure by common rail direct injection (CRDI) and CNG is injected at the intake port for premixing. The CNG/diesel dual-fuel engine had an equally satisfactory coordinate torque and power as the conventional diesel engine. Moreover, the CNG alternation rate is over 89% throughout the operating range of the CNG/diesel dual-fuel engine. PM emission by the dual-fuel engine is 94% lower than that by the diesel engine; however, NOx emission by the dual-fuel engine is higher than that by the diesel engine.

Characteristics of the In-cylinder Flow and Fuel Behavior with Respect to Fuel Injection Angle and Cone Angle in the PFI Dual Injection Engine (PFI Dual Injection 엔진의 연료 분사각도와 분무각에 따른 엔진 내부 유동 및 연료 거동 특성)

  • Lee, Seung Yeob;Chung, Jin Taek;Park, Young Joon;Yu, Chul Ho;Kim, Woo Tae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.221-229
    • /
    • 2015
  • The PFI dual injection engine using one injector per an intake port was developed for solving the DISI engine cost problem. Excellent fuel atomization and targeting of the PFI dual injection engine made enhancement on the fuel efficiency and engine power. In order to develop a PFI dual injection engine, characteristics of the in-cylinder flow and fuel behavior with respect to fuel injection angle and cone angle of the PFI dual injection engine was investigated. Numerical calculation was conducted to analyze 3D unsteady in-cylinder flow and fuel behavior using STAR-CD. The engine operating condition was 2,000rpm at WOT. As a result, the amount of intake air, evaporated fuel and fuel film according to injection angle and cone angle were presented. The results were influenced by interaction between injected fuel and intake port wall.