• Title/Summary/Keyword: 흙막이 공사

Search Result 89, Processing Time 0.025 seconds

Behavior of the Ground under a Building due to Adjacent Ground Excavation (근접굴착시 건물 하부 지반의 거동)

  • Lee, Jong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.49-55
    • /
    • 2018
  • A pre-load of bracing was imposed to prevent the horizontal displacement on the strut of the braced wall adjacent to the building during the ground excavation. For this purpose, large scale model tests were conducted, without and with pre-load on braced wall. Adjacent building load was also imposed in different locations, that were 0 m, 1D, 2D on ground surface. In this study, model tests in 1:10 scale were performed in real construction sequences, and adjacent building was 12 m in width and the size of model test pit was 2 m in width, 6 m in height, and 4 m in length. As a result, it was found that the stability of the existing building adjacent to the braced wall within Rankine's active zone could be greatly enhanced when the horizontal displacement of the braced wall was reduced by applying a pre-load. which was larger than the designated axial force on the strut of the braced wall.

Analysis of ground settlement due to circular shaft excavation (원형 수직구 굴착에 따른 발생 지반침하 분석)

  • Moorak Son;Kangryel Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.87-99
    • /
    • 2023
  • Ground excavation inevitably causes ground displacement of adjacent ground, and structures and facilities exposed to ground displacement may suffer various damages. Therefore, in order to minimize the damage and damage to adjacent structures and facilities caused by excavation, ground displacement (settlement and horizontal displacement) in the adjacent ground caused by excavation must first be predicted. There is many ground displacement information induced by general braced cut excavation, but the information is not enough for circular shaft excavation. This study aims to provide information on the estimation of ground settlement caused by circular shaft excavation through the case analysis of circular shafts and comparison with braced cut excavation. From this study, it was found that the use of the settlement criterion of braced cut excavation as the settlement management criterion for circular shaft excavation is a conservative approach in terms of safety. But when considering the economic aspect, it may result in overdesign of the wall and therefore, a more reasonable settlement criterion can be needed for circular shaft excavation.

A Case Study on the Top-Down Methods Performed in the Excavation Works of Domestic Downtown (국내 도심지 굴착공사에 적용된 Top-Down 공법의 시공사례 연구)

  • Chung, Jeeseung;Park, Sukk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.5-19
    • /
    • 2017
  • Underground excavation for building construction in Korea is changing from conventional support method (Strut, Ground anchor) to inside permanent support method by stability, economic, circumstances around excavation and etc. This study was selected the sites of Top-down, New Top-down, S.P.S, S.T.D and B.R.D in general use. This study was compared and analyzed a construction cost and period between aforementioned methods and conventional support method. Also, this study was confirmed the stability of temporary retaining wall by analysis for measurement data under construction. As a result, this study can grasp that most improved permanent support method is excellent in economic and constructability than conventional support method in case of deep excavation and rapid appearance of bedrock.

Effects of Functional Improvement of Multiaxis Flat Continuous Soil Cement Earth Retaining Wall (다축 평면 연속형 SCW 흙막이 벽체의 개선 효과)

  • Chung, Choong-Sub;Yoo, Chan Ho;Nam, Ho Seong;Choi, In Gyu;Baek, Seung Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.7-22
    • /
    • 2023
  • In January 2022, a new legislation was enforced to enhance the safety of underground construction. Consequently, a comprehensive assessment of underground safety is now an integral part of the planning process, including an evaluation of its impact. Ensuring the stability of temporary retaining walls during underground excavation has become paramount, prompting a heightened focus on the assessment of underground safety. This study delves into the analysis of the Multi-axis Flat Continuous Soil Cement Wall retaining wall (MFS) construction method. This method facilitates the expansion of wall thickness in the ground and provides flexibility in selecting and spacing H-piles. Through laboratory model tests, we scrutinized the load-displacement behavior of the wall, varying the H-pile installation intervals using the MFS method. Additionally, a 3-dimensional numerical analysis was conducted to explore the influence of H-pile installation intervals and sizes on the load for different thicknesses of the MFS retaining wall. The displacement analysis yielded the calculation of the height of the arching effect acting on the wall. To further our understanding, a design method was introduced, quantitatively analyzing the results of axial force and shear force acting on the wall. This involved applying the maximum arching height, calculated by the MFS method, to the existing member force review method. The axial force and shear force, contingent on the H-pile installation interval and size applied to the MFS retaining wall, demonstrated a reduction effect ranging from 24.6% to 62.9%.

A Study on the Optimal Location of the Inclinometer and Strain Gauge in Small-Scale Underground Excavation (소규모 지하굴착에서 지중경사계와 변형률계의 최적 위치 선정에 대한 연구)

  • Gichun Kang;Jinuk Park;Byeongjin Roh;Jiahao Sun;Seong-Kyu Yun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.23-33
    • /
    • 2023
  • Currently, there are cases in Korea where economic damage has occurred due to the ambiguity instrument installation and operation standards in the construction of temporary earth retaining wall, failing to prevent collapse of temporary earth retaining wall at the construction site in advance. Therefore, in this study, a numerical analysis was conducted to find the appropriate installation location of the inclinometer and strain gauge among the installed instruments shown in the design drawing of the temporary earth retaining wall. As a results, It was found that the installation position of the underground inclinometer is the corner of the retaining wall in the case of plane-deformation analysis, and the most displacement occurs in the center of the excavation surface in the case of 3D analysis. When the stress and moment are comprehensively analyzed, the corner is judged to be a vulnerable point. In the case of the strain gauge, In plane-deformation analysis and 3D analysis, the maximum bending stress occurred at the wale connection where the end of the strut and the counter strut are in contact. At this point, it is analyzed that it is necessary to focus on installing and managing the connection to prevent accidents from being vulnerable.

Analysis on Impact Factors of Open-cut Type Excavation Work using Numerical Analysis Method (수치해석기법을 이용한 개착식 지반굴착공사의 영향인자 분석)

  • Seong, Joo-Hyun;Kim, Yong-Soo;Shin, Byoung-Gil
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.43-53
    • /
    • 2013
  • In this study, an analysis about the causes of different types of excavation on accidents is required in order to prevent the frequently occurring accidents related to the earth retaining structure and excavation. Also, analysis of influence was performed by using numerical typical soil conditions and construction trend using numerical analysis method. According to the analysis results of 25 accident cases, the main influence factors were found as following: insufficient of soil survey, instability of temporary facility and lack of groundwater treatment, etc. Furthermore, in the numerical analysis result of 22 cases, drainage method was occurred larger settlement than waterproof method in the Inland. In case of applying the earth anchor method, it needs more detailed in the regions, which are discovered soft ground or rock discontinuities. Also, The consolidated clay absolutely needs further consideration of excess hydrostatic pressure.

A Case Analysis of the Economic Impact on Accidents during Excavation (터파기 공사 사고의 경제적 영향 사례분석)

  • Go, Kwang-Ro;Lee, Ghang;Choi, Myung-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.7-10
    • /
    • 2008
  • As the land price in the downtown area increases, buildings are becoming bigger, deeper and higher. Consequently, the importance of underground construction has increased. Although construction engineers make every effort to complete underground construction without any problem, construction failures like landslides and the collapse of a retaining wall occur because of the uncertainty of the soil conditions as well as the unexpected risks of excavation work. In order to prevent potential excavation accidents, it is essential to understand the causes and impacts of such accidents. However, there are only a few examples of construction failures, which show the economic impact on accidents during excavation because of the sensibility of the information. This paper presents two cases of excavation accidents, which were investigated by construction insurance company. The compensation for the accidents paid by the insurance company was compared with the estimated costs calculated based on the estimation method for excavation accidents proposed by our previous study. The comparison results showed that the estimate calculated by our method was much less than the actual compensation because the estimate solely focused on the construction costs whereas the compensation included other external factors.

  • PDF

A Study of Earth Pressure and Deformation acting on the Flexible Wall in Soft Soil (연약지반 흙막이벽에 작용하는 토압 및 변위에 관한 연구)

  • Park, Yeong-Mog;Chung, Youn-In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.215-222
    • /
    • 2003
  • Recently the deep and large excavations are performed near the existing buildings in urban areas for the practical use of underground space. The earth pressure due to the excavation are varied according to the conditions of ground, the depth of excavation, the construction methods, and the method of supporting the earth pressure etc.. In this study, not only the behavior of axial load and distribution of earth pressure on the flexible wall according to stage excavation depth but also magnitude and distribution of lateral deformation, and the equivalent earth pressure from strut axial loads were analyzed by the results measured from instruments such as, load cells, strain gauges, and in-situ inclinometer, on the field of subway construction. According to the results of this study in the case of stage excavation the earth pressure of soft clayey soil is compounded with Terzaghi-Peck and Tschebotarioff.

A Study on the Development of Flowable Fill Materials for H-pile (가시설 H-pile의 유동화 채움재 개발)

  • Jeong, Won-Jeong;Im, Jong-Chul;Kim, Tae-Hyo;Joo, In-Gon;Kang, Hyun-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.39-50
    • /
    • 2011
  • Nowadays, H-piles are usually used as temporary retaining walls, and sometimes buried in the ground after construction. The purpose of this study is the development of flowable fill materials that are easy to fill holes of retaining wall structure and minimize friction during pulling out H-pile. The first test was performed to decide mix proportion that is reasonable for purpose, in the second test, direct shear test was performed to get pullout resistance between flowable fills material and H-pile, and one dimensional consolidation test was performed to analyze the compressibility. In the test result, it showed that flowable fill material mix proportion is 350-450% of water, 70-100% of cement and 70-100% of sand based on the bentonite weight.

Model Tests for the Damage Assessment of Adjacent Buildings in Urban Excavation (흙막이굴착에 따른 인접건물의 손상평가에 대한 모형실험연구)

  • Kim, Hak-Moon;Hwang, Eui-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.121-131
    • /
    • 2007
  • This study is to investigate the damage assessment of adjacent structures due to excavation in urban environment. Model tests were carried out for 2 story masonry building and frame structures in various shapes and locations. The damage level of adjacent structures were very differently estimated in accordance with the shape ratio (L/h) of structures, construction stages, and various locations. Therefore the most weak part (bay) of structure must be heavily instrumented and monitored in more details at early stage of constructions. The progressive crack development mechanism at various construction stages was revealed through model tests and crack size indicated more conservative side of damage level on the damage level graph.