• Title/Summary/Keyword: 흔잡제어

Search Result 10, Processing Time 0.024 seconds

Design of Efficient Data Transmission Protocol for Integrated Wire and Wireless Network using Homeserver Cache Memory (유무선망 연동에서 홈서버의 캐쉬 메모리를 이용한 효율적인 데이터 전송시스템 설계)

  • Kwang, Yong-Wan;Kim, Gil-Bae;Kim, Woo-Suk;Park, Hye-Ryoung;Nam, Ji-Seung
    • Annual Conference of KIPS
    • /
    • 2003.05b
    • /
    • pp.1209-1212
    • /
    • 2003
  • 오늘날 인터넷 환경에서의 망은 유무선의 환경이 통합된 하나의 망으로 달수 있다. 일반적인 TCP에서는 무선망에서의 핸드오프나 비트오류 등으로 인한 패킷 손실이 발생하는 경우에도 흔잡제어 알고리즘으로 손실된 패킷을 복구하게 되며 이러한 복구는 혼잡윈도우를 줄이게 됨으로 인해 현저히 TCP의 처리량을 감소시키게 된다. 본 논문에서는 유무선이 통합된 망에서 데이터 전송 효율을 높일 수 있는 알고리즘을 제시하고자 한다. 이 알고리즘에서는 홈서버를 사용하여 무선망에서 발생한 패킷 손실이 종단간의 재전송이 아닌 홈서버에서 지역 재전송을 함으로써 유무선망의 부하를 줄이고 흔잡제어 알고리즘이 실행되는 것을 방지하여 TCP의 성능향상을 가져올 수 있으며 캐쉬메모리에 재전송 패킷을 보관하여 재전송함으로써 보다 빠른 재전송효과를 얻을 수 있다.

  • PDF

Early Rate Adaptation Protocol in DiffServ for Multimedia Applications (멀티미디어 서비스를 위한 DiffServ 망에서의 빠른 혼잡 제어 알고리즘)

  • Park Jonghun;Yoo Myungsik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1B
    • /
    • pp.39-46
    • /
    • 2005
  • As the multimedia application traffic takes more portion in the internet traffic, it is necessary to control the network congestion through the congestion control protocol. In addition, the QoS-enabled networks such as DiffServ become an indispensable technology when running the multimedia applications. However, the previously proposed end-to-end congestion control algorithms take the round trip time to react the network congestion. Thus, as the RTT becomes larger, the reaction against the congestion gets delayed further, while the network congestion gets worse. In addition the performance of end-to-end congestion control algorithm is degraded if the QoS-enabled network runs the congestion control mechanism in the network level without any coordination between them. In this paper, we propose the early rate adaptation protocol for the DiffServ network which effectively linke the congestion control algorithm at the host and the congestion mechanism in the network together. By taking advantage of early congestion notification from the network it is possible to react the network congestion more quickly and effectively.

TCP Congestion Control Algorithm using TimeStamp (TimeStamp를 이용한 TCP 혼잡제어 알고리즘)

  • 김노환
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.3
    • /
    • pp.126-131
    • /
    • 2000
  • Through many users employ TCP of which the performance has been proved in Internet, but many papers Proposed to improve TCP performance according to varying network architecture. In Particular, BWDP(bandwidth-delay Product) grew larger because of the increasing delay in satellite link and the network's speed-up. To consider these increased bandwidth-delay product, it is suggested that TCP options include Window Scale option. TimeStamp option, and PAWS. Because TCP window size should be commonly high in the network with these increased bandwidth-delay product, the multiple decrease and linear increase scheme of current TCP would cause underflow and instability within network. Then TCP performance is reduced as a result. Thus, to improve TCP congestion control algorithm in the network which has large sized window, this paper proposes the congestion control scheme that controls window size by using TimeStamp option.

  • PDF

A Receiver-based Congestion Control Algorithm with One-way Trip Time for Multimedia Applications (멀티미디어 응용을 위한 수신측 중심의 혼잡 제어 알고리즘)

  • 정기성;박종훈;홍민철;유명식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6B
    • /
    • pp.553-562
    • /
    • 2003
  • Supporting QoS (Quality of Service) for the multimedia applications becomes an important issue as the demand of multimedia applications increases. Thus, it is necessary for the application layer to have an efficient congestion control algorithm, which can support the multimedia applications' QoS requirements. In this paper, we propose a new application layer congestion control algorithm, called RRC-OTT (Receiver-based Rate Control with One-way Trip Time). RRC-OTT algorithm differs from the previously proposed algorithms in that the receiver takes the responsibility of the network congestion control. Thus, RRC-OTT algorithm can not only precisely estimate the network congestion using OTT (one-way Trip Time), but reduce the work load from the sender (e.g., the web server). Our simulation study shows that RRC-OTT algorithm can maintain the comparable link utilization to the previously proposed algorithms and keep the packet jitter low, which thus can help enhance the quality of multimedia applications.

A Local Representative Method for Maintaining a Stable Transmission Rate in Multicasting (멀티캐스트 환경에서의 안정적 전송률 유지를 위한 지역대표자 기법)

  • Jang Jong-Woo;Koo Myung-Mo;Kim Sang-Bok
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.9
    • /
    • pp.1208-1215
    • /
    • 2005
  • In the case of receiving feedbacks from many receivers in the multimedia application using multicasting, the traffic congestion caused bp heavy traffic results in the problem of transmission rate decrease. In solving of this, the local representative method is adopted. However, the control of transmission rate in consideration of all receivers caused uncongested local transmission rate to get slower. In this paper, there is a local representative in solving of this problem. When the transmission rate of a group is less than minimum support threshold, the local representative recounts the transmission rate without congested receivers. Therefore, The local representative method has improved the problem that the transmission rate of uncongested local decreases. The result of this paper shows that this method provides stable transmission rate rather than those of existing methods.

  • PDF

A Study of Traffic Flow Characteristics for Estimating Queue-Length in Freeway (고속도로 대기행렬길이 산정모형 개발을 위한 연속류 특성 분석)

  • 노재현;손봉수;도철웅;신치현
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.2
    • /
    • pp.179-191
    • /
    • 1999
  • To device effective freeway traffic flow control strategies and freeway traffic information dissemination strategies, it is very important to estimate real physical queue length on the freeway. Shock wave theory and queueing theory have limitation to be used to estimate the queue length. The primary objective of this study is to develop a reliable method for estimating the physical queue length and level of congestion. Queueing propagation processes were analysed by using such traffic data as main line traffic volume, ramp volume, density. speed, and physical queue length collected by video photographing on Olympic Freeway. As a result of analysis, it has been confirmed that the real queue length can be estimated by using the traffic counts arriving the congested region and passing a bottleneck location. Further more, a reliable method for estimating the level of congestion could be developed on the basis of real-time traffic counts.

  • PDF

A Design of Hop-by-Hop based Reliable Congestion Control Protocol for WSNs (무선 센서 네트워크를 위한 Hop-by-Hop 기반의 신뢰성 있는 혼잡제어 기법 설계)

  • Heo Kwan;Kim Hyun-Tae;Ra In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1055-1059
    • /
    • 2006
  • In Wireless Sensor Networks(WSNs), a sensor node broadcasts the acquisited sensing data to neighboring other nodes and it makes serious data duplication problem that increases network traffic loads and data loss. This problem is concerned with the conflict condition for supporting both the reliability of data transfer and avoidance of network congestion. To solve the problem, a reliable congestion control protocol is necessary that considers critical factors affecting on data transfer reliability such as reliable data transmission, wireless loss, and congestion loss for supporting effective congestion control in WSNs. In his paper, we proposes a reliable congestion protocol, called HRCCP, based on hop-hop sequence number, and DSbACK by minimizing useless data transfers as an energy-saved congestion control method.

A Load-Sharing Scheme using SCTP Multi-homing (SCTP 멀티호밍 특성을 활용한 부하 분산 기법)

  • Song Jeonghwa;Lee Meejeong
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.6
    • /
    • pp.595-607
    • /
    • 2004
  • Networks often evolve to provide a host with multiple access points to the Internet. In this paper, we propose a transport layer load distribution mechanism utilizing the multiple network interfaces simultaneously. We specifically propose an extension of Stream Control Transmission Protoco1 (SCTP) to have load sharing over multiple network interfaces. We named the particular service provided by the Proposed load sharing mechanism to be LS (Load Sharing) mode service. LS mode service is based on the following four key elements: (i) the separation of flow control and congestion control, (ii) congestion window based striping, (iii) redundant packet retransmission for fast packet loss recovery, (iv) a novel mechanism to keep track of the receiver window size with the SACKS even if they arrive out-of-order. Through simulations, it is shown that the proposed LS mode service can aggregate the bandwidth of multiple paths almost ideally despite of the disparity in their bandwidth. When a path with a delay of 100% greater is utilized as the second path, the throughput is enhanced about 20%.

A Study on State Dependent RED and Dynamic Scheduling Scheme for Real-time Internet Service (실시간 인터넷 서비스를 위한 상태 의존 RED 및 동적 스케줄링 기법에 관한 연구)

  • 유인태;홍인기;서덕영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9B
    • /
    • pp.823-833
    • /
    • 2003
  • To satisfy the requirements of the real-time Internet services, queue management and scheduling schemes should be enhanced to accommodate the delay and jitter characteristic of them. Although the existing queue management schemes can address the congestion problems of TCP flows, they have some problems in supporting real-time services. That is, they show performance degradation when burst traffics are continuously going into the system after the queue is occupied at a predefined threshold level. In addition, under the congestion state, they show large jitter, which is not a desirable phenomenon for real-time transmissions. To resolve these problems, we propose a SDRED (State Dependent Random Early Detection) and dynamic scheduling scheme that can improve delay and jitter performances by adjusting RED parameters such as ma $x_{th}$ and $w_{q}$ according to the queue status. The SDRED is designed to adapt to the current traffic situation by adjusting the max,$_{th}$ and $w_{q}$ to four different levels. From the simulation results, we show that the SDRED decreases packet delays in a queue and has more stable jitter characteristics than the existing RED, BLUE, ARED and DSRED schemes.mes.mes.

Congestion Control based on Genetic Algorithm in Wireless Sensor Network (무선 센서 네트워크에서 유전자 알고리즘 기반의 혼잡 제어)

  • Park, Chong-Myung;Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.413-424
    • /
    • 2009
  • Wireless sensor network is based on an event driven system. Sensor nodes collect the events in surrounding environment and the sensing data are relayed into a sink node. In particular, when events are detected, the data sensing periods are likely to be shorter to get the more correct information. However, this operation causes the traffic congestion on the sensor nodes located in a routing path. Since the traffic congestion generates the data queue overflows in sensor nodes, the important information about events could be missed. In addition, since the battery energy of sensor nodes exhausts quickly for treating the traffic congestion, the entire lifetime of wireless sensor networks would be abbreviated. In this paper, a new congestion control method is proposed on the basis of genetic algorithm. To apply genetic algorithm, the data traffic rate of each sensor node is utilized as a chromosome structure. The fitness function of genetic algorithm is designed from both the average and the standard deviation of the traffic rates of sensor nodes. Based on dominant gene sets, the proposed method selects the optimal data forwarding sensor nodes for relieving the traffic congestion. In experiments, when compared with other methods to handle the traffic congestion, the proposed method shows the efficient data transmissions due to much less queue overflows and supports the fair data transmission between all sensor nodes as possible. This result not only enhances the reliability of data transmission but also distributes the energy consumptions across the network. It contributes directly to the extension of total lifetime of wireless sensor networks.