• Title/Summary/Keyword: 흑연전극

Search Result 94, Processing Time 0.026 seconds

The Cycling Performance of Graphite Electrode Coated with Tin Oxide for Lithium Ion Battery (리튬이온전지용 주석산화물이 도포된 흑연전극의 싸이클 성능)

  • Kang, Tae-Hyuk;Kim, Hyung-Sun;Cho, Won-Il;Cho, Byung-Won;Ju, Jeh-Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.52-56
    • /
    • 2002
  • Tin oxide was coated on graphite particle by sol-gel method and an electrode with this material having microcrystalline structure for lithium ion battery was obtained by heat treatment in the range $400-600^{\circ}C$. The content of tin oxide was controlled within the range of $2.25wt\%\~11.1wt\%$. The discharge capacity increased with the content of tin oxide and also initial irreversible capacity increased. The discharge capacity of tin oxide electrode showed more than 350 mAh/g at the initial cycle and 300 mAh/g after the 30th cycle in propylene carbonate(PC) based electrolyte whereas graphite electrode without surface modification showed 140 mAh/g. When the charge and discharge rate was changed from C/5 to C/2, The discharge capacity of tin oxide and graphite electrode showed $92\%\;and\;77\%$ of initial capacity, respectively. It has been considered that such an enhancement of electrode characteristics was caused because lithium $oxide(Li_2O)$ passive film formed from the reaction between tin oxide and lithium ion prevented the exfoliation of graphite electrode and also reduced tin enhanced the electrical conduction between graphite particles to improve the current distribution of electrode.

Study on the Surface Reactions of Graphite Electrodes by Anodic Polarization (양극분극에 의한 흑연전극의 계면반응에 대한 연구)

  • 오한준;김인기;이종호;이영훈
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • Electrode surface reaction on three carbon materials(glassy carbon, synthesized graphite, graphite foil) in 0.5 M K2SO4 electrolyte is investigated by impedance spectroscopy during anodic polarization. The double layer capacitance of the graphite foil electrode is relatively higher than that of other two materials. The change of capacitance parameter C due to chemical adsorption on glassy carbon and synthesized graphite(PVDF graphite) is observed in 0.5 M K2SO4 solution at anodic polarization. In general, the faradic impedance on glassy carbon depends on anodic polarization, and the change of impedance parameter on graphite foil at anodic polarization is not remarkable, because this reaction is controlled by field transport.

  • PDF

Study on the surface reactions of carbon and graphite electrodes in sulfuric acid solution (황산 용액중의 분극시 나타나는 탄소전극들의 계면반응)

  • 오한준;김인기;이종호;이영훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.648-662
    • /
    • 1996
  • Electrode surface reaction on glassy carbon and synthesized graphite (PVDF mixed graphite) in sulfuric acid solution is investigated by impedance spectroscopy at cyclic polarization. The redox peak, which may be due to the change of chemical adsorped functional group on electrode surface or oxidation and reduction of oxygen, is represented on glassy carbon and graphite electrode in potentio-dynamic current curve. The oxidation and reduction of these surface functional group on glassy carbon and PVDF mixed graphite have a major affect on the impedance spectrum and Faraday impedance parameter at cyclic polarization.

  • PDF

Electrocatalytic Oxidation of NADH at the Modified Graphite Electrode Incorporating Gold Nano Particles (금 나노입자를 회합시킨 수식된 흑연전극으로 NADH의 전기촉매 산화반응)

  • Cha, Seong-Keuck;Han, Sung-Yub
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Mercaptopropionic acid(mpa) has been used to make self-assembled monolayer(SAMs) on the surface of graphite electrode incorporating gold nano particles, which are subsequently modified with dopamine(dopa). Such modified electrodes haying types of Gr(Au)/mpa-dopa were employed in the electrocatalytic oxidation of NADH. The responses of such modified electrodes were studied in terms of electron transfer kinetics and reaction procedure in the reaction. The reaction of the surface immobilized dopa with NADH was studied using the rotating disk electrode technique and a value of $5.06{\times}10^5M^{-1}s^{-1}$ was obtained for the second-order rate constant in 0.1 M phosphate buffer(pH=7.0), which was a $EC_{cat}$ and kinetic controlled procedure. But, the modified electrodes were diffusion controlled reaction having $4.64{\times}10^{-4}cm^2s^{-1}$ of the coefficient within $10^{-3}s$ after starting the reaction.

Electrochemical Characteristics of Assembled-Graphite/DSA Electrode for Redox Flow Battery (Redox Flow Battery용 일체화된 흑연/DSA 전극의 전기화학적 특성)

  • Kim, Hyung-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.123-127
    • /
    • 2010
  • An assembled-graphite/DSA(Dimensionally Stable Anode) was prepared using graphite powder to increase durability and energy efficiency of redox flow battery and investigated its electrochemical properties in vanadium-based electrolyte. The cyclic voltammetry (CV) was carried out in the voltage range of -0.7V and 1.6V vs. SCE at 5 mV/sec scan rate to analyze vanadium redox reaction. From the CV results, the assembled-graphite/DSA electrode showed a fast couple reaction and good reversibility in 2M $VOSO_4$ + 2.5 M $H_2SO_4$ electrolyte. Therefore, it has been expected that this electrode increases power density as well as energy density of redox flow battery.

Modification of Anode Surface with Hydrogel and Multiwall Carbon Nanotube for High Performance of Microbial Fuel Cells (미생물연료전지의 성능향상을 위한 하이드로젤 및 다중벽 탄소나노튜브를 이용한 산화전극의 표면개질)

  • Song, Young-Chae;Kim, Dae-Sup;Woo, Jung-Hui;Yoo, Kyuseon;Chung, Jae-Woo;Lee, Chae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.757-764
    • /
    • 2012
  • The surface of graphite fiber fabric anode was modified with a hydrogel and a mixture of hydrogel and multiwall carbon nanotube, and their effectiveness were compared to the unmodified anodes in a batch microbial fuel cell (microbial fuel cells). The maximum power density of the MFC was determined by both performance of the anode and cathode. The maximum power density for the MFC with the anode modified with the mixture of hydrogel and multiwall carbon nanotube was $1,162mW/m^2$ which was 27.7% higher than that with the unmodified graphite fiber fabric anode. "The mixture of hydrogel and multiwall carbon nanotube is a good surface modifier for anode with high biological affinity and low activation losses."

The Behavior of Pellet Packed-bed Electrodes Reactor -Graphite Pellet Electrode- (펠레트 충전층 전극 반응기의 특성 -흑연 펠레트 전극-)

  • Kim, Hark-Joon
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.657-662
    • /
    • 1992
  • For describing the bipolar packed-bed electrode cell filled with graphite pellete electrode, the application of the model of equivalent circuit was studied. The ratio between the Faradaic current through bipolar electrodes and the applied current was dependent on the resistance coefficient, specific conductivity of electrolyte, and electrolyte circulation rate. The ratio of the Faradaic current through bipolar electrodes to the applied current increased with the applied current(or cell voltage), but decreased with the increase of electrolytic conductivity and circulation rate of the electrolyte.

  • PDF

Improvement of Rate Capability and Low-temperature Performances of Graphite Negative Electrode by Surface Treatment with Copper Phthalocyanine (구리 프탈로시아닌으로 표면처리된 흑연 음극의 속도특성 및 저온성능 개선)

  • Jurng, Sunhyung;Park, Sangjin;Ryu, Ji Heon;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.130-135
    • /
    • 2015
  • The rate capability and low-temperature characteristics of graphite electrode are investigated after surface treatment with copper phthalocyanine (CuPc) or phthalocyanine (Pc). Uniform coating layers comprising amorphous carbon or copper are generated after the treatment. The rate performance of graphite electrodes is enhanced by the surface treatment, which is more prominent with CuPc. The resistance of the graphite electrode estimated from electrochemical impedance spectroscopy and pulse resistance measurement is the smallest for the CuPc-treated graphite. It is likely that the amorphous carbon layer formed by the decomposition of Pc facilitates $Li^+$ diffusion and the metallic copper derived from CuPc improves the electrical conductivity of the graphite electrode.

A study on the characteristics of EDM with the electrode materials (전극 소재에 따른 방전가공 특성에 관한 연구)

  • Jung T.S.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.569-570
    • /
    • 2006
  • In this study, the characteristics of Electrical Discharge Machining (EDM) with the electrode materials were investigated. EDM experiments have been carried out on electrodes with eight different copper-based and graphite-based materials. From the results, the copper-based electrodes showed excellent surface roughness than the graphite-based electrodes. But graphite based electrodes have advantages in economic aspects.

  • PDF

Electrolyte-concentrations Effects on SEI Formation on Graphite Negative Electrode in EC-based Electrolyte Solutions (흑연전극상의 SEI 형성에 미치는 EC계 전해질 농도의 영향)

  • Choi, Dong-Gui;Jeong, Soon-Ki
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.356-358
    • /
    • 2007
  • 본 논문에서는 농도가 다른 EC계의 전해질 용액 중에서 흑연의 Cyclic voltammetry(CV)를 측정하였다. CV후 전극표면에 생성된 SEI를 투과형 전자현미경으로 분석한 결과, PC계에서 얻어지는 결과와 유사하게 충 방전 반응 및 생성된 SEI의 성질이 전해질의 농도에 크게 의존하고 있음을 확인하였다.

  • PDF