• Title/Summary/Keyword: 흐름저항

Search Result 338, Processing Time 0.024 seconds

Radiation, Energy, and Entropy Exchange in an Irrigated-Maize Agroecosystem in Nebraska, USA (미국 네브라스카의 관개된 옥수수 농업생태계의 복사, 에너지 및 엔트로피의 교환)

  • Yang, Hyunyoung;Indriwati, Yohana Maria;Suyker, Andrew E.;Lee, Jihye;Lee, Kyung-do;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.26-46
    • /
    • 2020
  • An irrigated-maize agroecosystem is viewed as an open thermodynamic system upon which solar radiation impresses a large gradient that moves the system away from equilibrium. Following the imperative of the second law of thermodynamics, such agroecosystem resists and reduces the externally applied gradient by using all means of this nature-human coupled system acting together as a nonequilibrium dissipative process. The ultimate purpose of our study is to test this hypothesis by examining the energetics of agroecosystem growth and development. As a first step toward this test, we employed the eddy covariance flux data from 2003 to 2014 at the AmeriFlux NE1 irrigated-maize site at Mead, Nebraska, USA, and analyzed the energetics of this agroecosystem by scrutinizing its radiation, energy and entropy exchange. Our results showed: (1) more energy capture during growing season than non-growing season, and increasing energy capture through growing season until senescence; (2) more energy flow activity within and through the system, providing greater potential for degradation; (3) higher efficiency in terms of carbon uptake and water use through growing season until senescence; and (4) the resulting energy degradation occurred at the expense of increasing net entropy accumulation within the system as well as net entropy transfer out to the surrounding environment. Under the drought conditions in 2012, the increased entropy production within the system was accompanied by the enhanced entropy transfer out of the system, resulting in insignificant net entropy change. Drought mitigation with more frequent irrigation shifted the main route of entropy transfer from sensible to latent heat fluxes, yielding the production and carbon uptake exceeding the 12-year mean values at the cost of less efficient use of water and light.

Developing a Model for Crime Prevention Hardware Performance Test and Certification System (방범하드웨어의 침입범죄 저항성능 시험·인증 체계에 관한 모형 연구)

  • Park, Hyeon-ho
    • Korean Security Journal
    • /
    • no.36
    • /
    • pp.255-292
    • /
    • 2013
  • Burglary (also called breaking and entering and sometimes housebreaking) is a crime, the essence of which is illegal entry into a building for the purposes of committing an offence. It is one of the most common types of crime and also a serious issue for every society. A house that is left insecure is an accessible and attractive target for burglars and therefore burglary resistance test & certification system for doors and windows has been developed in many countries. This paper explores several advanced foreign burglary resistance test/certifcation cases (the British SBD, the Dutch KOMO SKH/SKG, the Japanese CP mark, the Australian Standard Certification) for security products and domestic test/certification systems for fire safety products as a comparative study so that any improvement points can be gained for South Korea in the field of security product performance. The comparative analysis results show that South Korea is far behind the security product certification system and needs a lot of improvement in the system by benchmarking foreign cases. The domestic test/certification systems for fire safety products also give some insights for burglary-related security products' performance certification system in Korea. Overall, the need for relevant rules and regulations, the establishment of standards regarding testing and certification, including certified security +hardware product in building security certification system, performance testing as well as production testing (i.e. quality management system evaluation), the basic competency of testers, incentive system for certified/high quality security products were suggested in order to make an optimal model for the security production performance testing and certification system in Korea.

  • PDF

Heterogeneous Oxidation of Liquid-phase TCE over $CoO_x/TiO_2$ Catalysts (액상 TCE 제거반응을 위한 $CoO_x/TiO_2$ 촉매)

  • Kim, Moon-Hyeon;Choo, Kwang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.253-261
    • /
    • 2005
  • Catalytic wet oxidation of ppm levels of trichloroethylene (TCE) in water has been conducted using $TiO_2$-supported cobalt oxides at a given temperature and weight hourly space velocity. 5% $CoO_x/TiO_2$ might be the most promising catalyst for the wet oxidation at $36^{\circ}C$ although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Characterization of the $CoO_x$ catalyst by acquiring XPS spectra of both fresh and used Co surfaces gave different surface spectral features of each $CoO_x$. Co $2p_{3/2}$ binding energy of Co species exposed predominantly onto the outermost surface of the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $Co_2TiO_4$ and $CoTiO_3$. The spent catalyst possessed a 780.3 eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD measurements indicated that the phase structure of Co species in 5% $CoO_x/TiO_2$ catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.

Antithrombotic Activities of Cheongkookjang and Cheongkookjang Fermented with Green Tea or Mugwort (청국장 및 녹차, 쑥이 첨가된 청국장의 항혈전 활성)

  • Lee, Kyung-Ae;Jang, Jeong-Oak;Yoon, Hye-Kyung;Kim, Moo-Sung
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.298-303
    • /
    • 2007
  • Antithrombotic activities of water extract of cheongkookjang and cheongkookjang fermented with green tea or mugwort were evaluated on some antithrombosis related activities in vitro and thrombotic death inhibition in vivo. Cheongkookjang made of white soybean (Glycine max) or black small soybean (Rhynchosia nulubilis) showed potent antioxidative activities. Addition of green tea or mugwort during cheongkookjang fermentation increased the antioxidative activity, cheongkookjang with green tea showed more drastic increase compared with cheongkookjang with mugwort. Nitrite scavenging effects of the cheongkookjang extracts were prominent but the addition of green tea or mugwort seldom increased the scavenging effects. All the cheongkookjang extracts showed strong inhibitory activities on platelet aggregation. The inhibitory activities of cheongkookjang were increased considerably by addition of green tea or mugwort even with low concentration. Plasmin unit as fibrinolytic activity was not affected considerably by addition of green tea. Addition of mugwort decreased the activity transiently at low concentration ($0.3{\sim}1.0%$) but increased again slowly at higher concentration ($1{\sim}3%$). In vitro thrombotic death inhibition test, the antithrombotic activity of cheongkookjang made of black small bean with green tea was higher by about 1.5 times compared to that without green tea. As results, cheongkookjang might inhibit antithrombosis not only by fibrinolytic action but also by inhibition of platelet aggregation and antioxidative action. The addition of functional materials such as green tea or mugwort could increase the antithrombotic function, even at low concentration.

Experimental Study on the Hysteresis of Suction Stress in Unsaturated Sand (불포화 모래의 흡입응력 이력현상에 대한 실험적 연구)

  • Song, Young-Suk;Choi, Jin-Su;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.145-155
    • /
    • 2012
  • The matric suction and volumetric water content of Jumunin standard sand with a relative density of 60% were measured using an Automated Soil-Water Characteristic Curve (SWCC) apparatus during both drying and wetting processes. The test time for the drying process was longer than that for the wetting process, because the flow of water is likely to be protected by air trapped in voids within the soils during the drying process. Based on the matric suction and volumetric water content, the SWCC was estimated using the model proposed by van Genuchten (1980). For the drying process, the unsaturated fitting parameters ${\alpha}$, n, and m were 0.399, 8.586, and 0.884, respectively; for the wetting process, the values were 0.548, 5.625, and 8.220, respectively. The hysteresis phenomenon occurred in the SWCCs, which means the SWCC of the drying process is not matched with the SWCC of the wetting process. Using these unsaturated parameters, we estimated the Suction Stress Characteristic Curve (SSCC), based on the relationship between suction stress and the effective degree of saturation. The suction stress showed a rapid decrease when the matric suction exceeds the Air Entry Value (AEV). Therefore, the effective stress of unsaturated soils is different from that of saturated soils when the matric suction exceeds the AEV. The suction stress of the drying process exceeds that of the wetting process for a given effective degree of saturation. The hysteresis phenomenon was also recognized in SSCCs. The hysteresis phenomenon of SSCCs arises from that of SWCCs, which is induced by the ink bottle effect and the contact angle effect. In the case of a sandy slope, the suction stress is positive and acts to enhance the slope stability as the water infiltrates the ground, but is negative when the suction stress exceeds the AEV. The results obtained for the wetting process should be applied in analyses of slope stability, because the process of water infiltration into ground is similar to the wetting process.

Continuous Wet Oxidation of TCE over Supported Metal Oxide Catalysts (금속산화물 담지촉매상에서 연속 습식 TCE 분해반응)

  • Kim, Moon Hyeon;Choo, Kwang-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.206-214
    • /
    • 2005
  • Heterogeneously-catalyzed oxidation of aqueous phase trichloroethylene (TCE) over supported metal oxides has been conducted to establish an approach to eliminate ppm levels of organic compounds in water. A continuous flow reactor system was designed to effect predominant reaction parameters in determining catalytic activity of the catalysts for wet TCE decomposition as a model reaction. 5 wt.% $CoO_x/TiO_2$ catalyst exhibited a transient period in activity vs. on-stream time behavior, suggesting that the surface structure of the $CoO_x$ might be altered with on-stream hours; regardless, it is probable to be the most promising catalyst. Not only could the bare support be inactive for the wet decomposition reaction at $36^{\circ}C$, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Very low TCE conversion appeared for $TiO_2$-supported $NiO_x$ and $CrO_x$ catalysts. Wet oxidation performance of supported Cu and Fe catalysts, obtained through an incipient wetness and ion exchange technique, was dependent primarily on the kinds of the metal oxides, in addition to the acidic solid supports and the preparation routes. 5 wt.% $FeO_x/TiO_2$ catalyst gave no activity in the oxidation reaction at $36^{\circ}C$, while 1.2 wt.% Fe-MFI was active for the wet decomposition depending on time on-stream. The noticeable difference in activity of the both catalysts suggests that the Fe oxidation states involved to catalytic redox cycle during the course of reaction play a significant role in catalyzing the wet decomposition as well as in maintaining the time on-stream activity. Based on the results of different $CoO_x$ loadings and reaction temperatures for the decomposition reaction at $36^{\circ}C$ with $CoO_x/TiO_2$, the catalyst possessed an optimal $CoO_x$ amount at which higher reaction temperatures facilitated the catalytic TCE conversion. Small amounts of the active ingredient could be dissolved by acidic leaching but such a process gave no appreciable activity loss of the $CoO_x$ catalyst.

A Study on Visual Identity of Korean Government (우리나라 행정부의 시각 정체성 연구)

  • Cho, Ju-Eun
    • Archives of design research
    • /
    • v.19 no.2 s.64
    • /
    • pp.261-272
    • /
    • 2006
  • As we cannot think of our lives without a nation, it is closely related to almost every part of our daily lives. The role of government is becoming more important in the complex modern society as an essential element of national authority even though the government has indirect and secondary characteristics in its functional performance. Therefore, the government has to be efficient in planning and executing its policies, and it needs to be representative and fair as part of a national authoritative community. In the 21st century when symbolic and cultural importance of images are becoming more important, it is crucial for the government organizations to have an integrated identity design system that can satisfy both of these requirements of the government. However, the C.I.(Corporate Identity) of each Korean administrative branch has been developed separately and sporadically, which resulted in lack of consistency as part of the government. Shape and material of their C.I.s that follow short term design trend and popularity also lack uniqueness which can be distinguished from those of any private corporation. This may show that our government lacks systematic administrative capability, since image of a feature represents its characteristics and reality, and their recognition and evaluation from others become identity of the feature. In this perspective, the purpose of this thesis is to suggest an identity design system that has certain rules and regularity with wide variety of possible alterations for the central administration in Korea. In order to represent this visually, identity design system with both integrity and variety of possible alteration is created based on traditional Korean culture, especially the concept of Umyang-ohaeng and Samjae.

  • PDF

Behavior of Hollow Box Girder Using Unbonded Compressive Pre-stressing (비부착 압축 프리스트레싱을 도입한 중공박스 거더의 거동)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Kim, Tae Kyun;Eoh, Cheol Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.201-209
    • /
    • 2010
  • Generally, PSC girder bridge uses total gross cross section to resist applied loads unlike reinforced concrete member. Also, it is used as short and middle span (less than 30 m) bridges due to advantages such as ease of design and construction, reduction of cost, and convenience of maintenance. But, due to recent increased public interests for environmental friendly and appearance appealing bridges all over the world, the demands for longer span bridges have been continuously increasing. This trend is shown not only in ordinary long span bridge types such as cable supported bridges but also in PSC girder bridges. In order to meet the increasing demands for new type of long span bridges, PSC hollow box girder with H-type steel as compression reinforcements is developed for bridge with a single span of more than 50 m. The developed PSC girder applies compressive prestressing at H-type compression reinforcements using unbonded PS tendon. The purpose of compressive prestressing is to recover plastic displacement of PSC girder after long term service by releasing the prestressing. The static test composed of 4 different stages in 3-point bending test is performed to verify safety of the bridge. First stage loading is applied until tensile cracks form. Then in second stage, the load is removed and the girder is unloaded. In third stage, after removal of loading, recovery of remaining plastic deformation is verified as the compressive prestressing is removed at H-type reinforcements. Then, in fourth stage, loading is continued until the girder fails. The experimental results showed that the first crack occurs at 1,615 kN with a corresponding displacement of 187.0 mm. The introduction of the additional compressive stress in the lower part of the girder from the removal of unbonded compressive prestressing of the H-type steel showed a capacity improvement of about 60% (7.7 mm) recovery of the residual deformation (18.7 mm) that occurred from load increase. By using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and rehabilitation of PSC girders are relatively easy, and the cost of maintenance is expected to decrease.