• Title/Summary/Keyword: 흉부 팬텀

Search Result 69, Processing Time 0.023 seconds

Assessment of Entrance Surface Dose and Image Distortion in Accordance with Abdominal Obesity in the Chest Radiography (흉부 X-선 검사에서 복부비만에 따른 입사표면선량과 영상 왜곡도 평가)

  • Kim, Boo Soon;Park, Jeong Kyu;Kwon, Soon Mu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.473-478
    • /
    • 2015
  • Abdominal obesity is one of the most influential index to predict of insulin resistance syndrome/metabolic syndrome in social demographic characteristics. It is matter of fact that radiation dose are increasing with development of medical treatment and device. In this study, we estimated distortion between reference image and entrance surface dose when take a chest radiography forward chest phantom assumed abdominal obesity. When angle of chest phantom incline $5^{\circ}$ forward, thoracic transverse and longitudinal diameter increase 1.22% and 0.44% each. Also cardiac transverse diameter increase 1.01% and cardio-throracic ratio (CTR) decrease 0.27% in the same situation of incline to $5^{\circ}$ forward. Thoracic transverse diameter shows the largest increase, and CTR was decreased. But entrance surface dose to phantom increase significantly 6.12% when angle of chest phantom incline $5^{\circ}$ forward. In conclusion, we have to pay attention to accurate positioning, to prevent a distortion of image through incline, and make patients not to expose to additional radiation.

Measurement of Radiation Dose of HR CT and Low Dose CT by using Anthropomorphic Chest Phantom and Glass Dosimetry (인체등가형 흉부팬텀과 유리선량계를 이용한 고해상력 및 저선량 CT의 선량측정)

  • Kweon, Dae Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.933-939
    • /
    • 2019
  • The purpose of this study is to provide basic clinical data by evaluating images, measuring absorbed dose and effective dose by using high resolution CT and low dose CT by using anthropomorphic chest phantom and glass dosimeter. Tissue dose was measured by inserting a glass dosimeter into the anthropomorphic chest phantom. A 64-slice CT system (SOMATOM Sensation 64, Siemens AG, Forchheim, Germany) and CARE Dose 4D were used, and the parameters of the high resolution CT were 120 kVp, Eff. Scan parameters of mAs 104, scan time 7.93 s, slice 1.0 mm (Acq. 64 × 0.6 mm), convolution kernel (B60f sharp) were used, and low dose CT was 120 kVp, Eff. mAs 15, scan time 7.41 s, slice 3.0 mm (Acq. 64 × 0.6 mm), scan of convolution kernel B50f medium sharp. CTDIvol was measured at 8.01 mGy for high resolution CT and 1.18 mGy for low dose CT. Low dose CT scans showed 85.49% less absorbed dose than high resolution CT scans.

Evaluation of Virtual Grid Software (VGS) Image Quality for Variation of kVp and mAs (관전압과 관전류량 변화에 대한 가상 그리드 소프트웨어(VGS) 화질평가)

  • Chang-gi Kong
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.725-733
    • /
    • 2023
  • The purpose of this study is to evaluate the effectiveness of virtual grid software (VGS). The purpose of this study is to evaluate the changes in energy and object thickness by dividing the use of VGS into two cases (Without-VGS) without using a movable grid. We attempted to determine the effectiveness of VGS by acquiring images using a chest phantom and a thigh phantom and analyzing SNR and CNR. In the chest phantom and femoral phantom, the tube flow was fixed at 2.5 mAs, and the tube voltage was changed by 10 kVp from 60 to 100 kVp to measure SNR and CNR, and SNR was about 1.09 to 8.86% higher in the chest phantom than in Without-VGS, and CNR was 4.18 to 14.56% higher in the VGS than in Without-VGS. And in the femoral phantom, SNR was about 9.78 to 18.05% higher in VGS than in Without-VGS, and CNR was 21.07 to 44.44% higher in VGS than in Without-VGS. The tube voltage was fixed at 70 kVp in the chest phantom and the femoral phantom, and the amount of tube current was changed at 2.5 to 16 mAs, respectively, and after X-ray irradiation, SNR and CNR were measured in the chest phantom, which was about 1.49 to 11.11% higher in VGS than in Without-VGS, and CNR was 4.76 to 13.40% higher in VGS than in Without-VGS. And in the femoral phantom, SNR was about 2.22 to 17.38% higher in VGS than in Without-VGS, and CNR was 13.85 to 40.46% higher in VGS than in Without-VGS. Therefore, if an inspection is required with a mobile X-ray imaging device, it is believed that good image quality can be obtained by using VGS in an environment where it is difficult to use a mobile grid, and it is believed that the use of mobile X-ray devices can be increased.

Analysis of Acquisition Parameters That Caused Artifacts in Four-dimensional (4D) CT Images of Targets Undergoing Regular Motion (표적이 규칙적으로 움직일 때 생기는 4DCT 영상의 모션 아티팩트(Motion Artifact) 관련된 원인분석)

  • Sheen, Heesoon;Han, Youngyih;Shin, Eunhyuk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.243-252
    • /
    • 2013
  • The aim of this study was to clarify the impacts of acquisition parameters on artifacts in four-dimensional computed tomography (4D CT) images, such as the partial volume effect (PVE), partial projection effect (PPE), and mis-matching of initial motion phases between adjacent beds (MMimph) in cine mode scanning. A thoracic phantom and two cylindrical phantoms (2 cm diameter and heights of 0.5 cm for No.1 and 10 cm for No.2) were scanned using 4D CT. For the thoracic phantom, acquisition was started automatically in the first scan with 5 sec and 8 sec of gantry rotation, thereby allowing a different phase at the initial projection of each bed. In the second scan, the initial projection at each bed was manually synchronized with the inhalation phase to minimize the MMimph. The third scan was intentionally un-synchronized with the inhalation phase. In the cylindrical phantom scan, one bed (2 cm) and three beds (6 cm) were used for 2 and 6 sec motion periods. Measured target volume to true volume ratios (MsTrueV) were computed. The relationships among MMimph, MsTrueV, and velocity were investigated. In the thoracic phantom, shorter gantry rotation provided more precise volume and was highly correlated with velocity when MMimph was minimal. MMimph reduced the correlation. For moving cylinder No. 1, MsTrueV was correlated with velocity, but the larger MMimph for 2 sec of motion removed the correlation. The volume of No. 2 was similar to the static volume due to the small PVE, PPE, and MMimph. Smaller target velocity and faster gantry rotation resulted in a more accurate volume description. The MMimph was the main parameter weakening the correlation between MsTrueV and velocity. Without reducing the MMimph, controlling target velocity and gantry rotation will not guarantee accurate image presentation given current 4D CT technology.

Image Quality Evaluation of CsI:Tl and Gd2O2S Detectors in the Indirect-Conversion DR System (간접변환방식 DR장비에서 CsI:Tl과 Gd2O2S의 검출기 화질 평가)

  • Kong, Changgi;Choi, Namgil;Jung, Myoyoung;Song, Jongnam;Kim, Wook;Han, Jaebok
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.27-35
    • /
    • 2017
  • The purpose of this study was to investigate the features of CsI:Tl and $Gd_2O_2S$ detectors with an indirect conversion method using phantom in the DR (digital radiography) system by obtaining images of thick chest phantom, medium thickness thigh phantom, and thin hand phantom and by analyzing the SNR and CNR. As a result of measuring the SNR and CNR according to the thickness change of the subject, the SNR and CNR were higher in CsI:Tl detector than in $Gd_2O_2S$ detector when the medium thickness thigh phantom and thin hand phantom were scanned. However, when the thick chest phantom was used, for the SNR at 80~125 kVp and the CNR at 80~110 kVp in the $Gd_2O_2S$ detector, the values were higher than those of CsI:Tl detector. The SNR and CNR both increased as the tube voltage increased. The SNR and CNR of CsI:Tl detector in the medium thickness thigh phantom increased at 40~50 kVp and decreased as the tube voltage increased. The SNR and CNR of $Gd_2O_2S$ detector increased at 40~60 kVp and decreased as the tube voltage increased. The SNR and CNR of CsI:Tl detctor in the thin hand phantom decreased at the low tube voltage and increased as the tube voltage increased, but they decreased again at 100~110 kVp, while the SNR and CNR of $Gd_2O_2S$ detector were found to decrease as the tube voltage increased. The MTF of CsI:Tl detector was 6.02~90.90% higher than that of $Gd_2O_2S$ detector at 0.5~3 lp/mm. The DQE of CsI:Tl detector was 66.67~233.33% higher than that of $Gd_2O_2S$ detector. In conclusion, although the values of CsI:Tl detector were higher than those of $Gd_2O_2S$ detector in the comparison of MTF and DQE, the cheaper $Gd_2O_2S$ detector had higher SNR and CNR than the expensive CsI:Tl detector at a certain tube voltage range in the thick check phantom. At chest X-ray, if the $Gd_2O_2S$ detector is used rather than the CsI:Tl detector, chest images with excellent quality can be obtained, which will be useful for examination. Moreover, price/performance should be considered when determining the detector type from the viewpoint of the user.

Radiation Dose and Image Quality of Low-dose Protocol in Chest CT: Comparison of Standard-dose Protocol (흉부 CT촬영에서 저선량 프로토콜의 선량과 화질: 표준선량 프로토콜과 비교)

  • Lee, Won-Jeong;Ahn, Bong-Seon;Park, Young-Sun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.84-89
    • /
    • 2012
  • The purpose of this study was to compare radiation dose and image quality between low-dose (LDP) and standard-dose protocol (SDP). LDP (120 kVp, 30 mAs, 2-mm thickness) and SDP (120 kVp, 180 mAs, 1.2-mm thickness) images obtained from 61 subjects were retrospectively evaluated at level of carina bifurcation, using multi-detector CT (Brilliance 16, Philips Medical Systems). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated at ascending aorta and infraspinatus muscle, from CT number and back-ground noise. Radiation dose from two protocols measured at 5-point using acrylic-phantom, and CT number and noise measured at 4-point using water-phantom. All statistical analysis were performed using SPSS 19.0 program. LDP images showed significantly more noise and a significantly lower SNR and CNR than did SDP images at ascending aorta and infraspinatus muscle. Noise, SNR and CNR were significantly correlated with body mass index (p<0.001). Radiation dose, SNR and CNR from phantom were significant differences between two protocols. LDP showed a significant reduction of radiation dose with a significant change in SNR and CNR compared with SDP. Therefore, exposure dose on LDP in clinical applications needs resetting highly more considering image quality.

Evaluation of Image Quality According to Presence or Absence of Upper limbs in Scan Field of View During CT Examinations (Including LUNG MAN) (CT 검사 시 스캔 범위 내 상지 유무에 따른 영상의 질 평가(LUNG MAN 포함))

  • Zhang, Yuying;Zheng, Haoyang;Jung, Kang-gyo;Cho, Yu-Jin;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.567-573
    • /
    • 2017
  • The purpose of this study was to evaluate whether or not there was artifact when the upper limb could not be lifted to the top of the head during multi-detector computed tomography(MDCT) scans of the chest and abdomen. Contrast radiography of the human and chest phantom was performed with 128channal MDCT. Under the same conditions(120 kVp, 110 mAs, standard algorithm)both hands lifted up and put down each time in the human experiment. In the chest phantom experiment, the radiography was carried out when the upper limb phantom was adjusted at a certain distance(0, 3, 7 cm) from the chest phantom. Subsequently, the values of Noise, CT number, SNR, and CNR were measured in the field of concern. The noise value of fat, rib, and muscle increased when the arm was lifted in humans(0.79, 47.8, 27%). Furthermore, when the upper limb was lowered, the noise value of muscle and lung increased in the phantom(31.2, 9.4%). In addition, the noise value of the muscles and lung decreased by 5, 25.12% and 5.6, 15.35% as the upper limb moved about 0,3,7cm away from the chest. When the chest and abdominal radiography were performed, in the case of the presence of other parts outside the inspection area, the probability of artifact was minimal while the distance was more than 3cm away from the upper limb to the chest and abdomen.

Effect of Patient Size on Image Quality and Dose Reduction after Added Filtration in Digital Chest Tomosynthesis (부가필터를 적용한 디지털 흉부단층합성검사에서 환자 체형에 따른 화질 평가와 선량감소 효과)

  • Bok, Geun-Seong;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.23-30
    • /
    • 2018
  • To evaluate the effect of patient size on effective dose and image quality for Digital Chest Tomosynthesis(DTS) using additional 0.3 mm copper filtration. Eighty artificial nodules were placed in the thorax phantom("Lungman," Kyoto Kagaku, Japan), and Digital Chest Tomosynthesis(DTS) images of the phantom were acquired both with and without added 0.3 mm Cu filtration. To simulate patients of three sizes: small, average size and oversize, one or two 20-mm-thick layer of PMMA(polymethyl methacrylatek) blocks were placed on the phantom. The Effective dose was calculated using Monte Carlo simulations. Two evaluations of image quality methods have been employed. Three readers counted the number of nodules detected in the lung, and the measured contrast-to-noise ratios(CNRs) were used. Data were analyzed statistically. The ED reduced $26{\mu}Sv$ in a phantom, $33{\mu}Sv$ in one 20-mm-thick layer of PMMA block placed on the phantom, and $48{\mu}Sv$ in two 20-mm-thick layer of PMMA blocks placed on the phantom. The Effective dose(ED) differences between DTS with and without filtration were significant(p<0.05). In particular, when we used two 20-mm-thick layer of PMMA blocks placed on the phantom, the ED was significantly reduced by 36% compared with those without additional filtration. Nodule detection sensitivities were not different between with and without added filtration. Differences of CNRs were statistically insignificant(p>0.05). Use of additional filtration allows a considerable dose reduction during Digital Chest Tomosynthesis(DTS) without loss of image quality. In particular, additional filtration showed outstanding result for effective dose reduction on two 20-mm-thick layer of PMMA blocks placed on the phantom. It applies to overweight patients.

Usefulness of a Functional Tracheobronchial Phantom for Interventional Procedure (중재 시술용 기능성 기관-기관지 팬텀의 유용성)

  • Kim, Tae-Hyung;Lim, Cheong-Hwan;Kim, Jeong-Koo;Kim, Myeong-Soo;Choi, Won-Chan;Lim, Jin-Oh;Lee, Kwang-Jong;Park, In-Ae;Kim, Mi-Ok;Jung, Eun-Mi;Shin, Ryung-Mi;Jung, Seung-Ki;Youn, Sun-Hee
    • Journal of radiological science and technology
    • /
    • v.26 no.4
    • /
    • pp.27-32
    • /
    • 2003
  • To evaluate usefulness of a functional tracheobronchial phantom for interventional procedure. The functional phantom was made as a actual size with human normal anatomy used silicone and a paper clay mold. A tracheobronchial-shape clay mold was placed inside a square box and liquid silicone was poured. After the silicone was formed, the clay was removed. We measured film density and tracheobronchial angle at the human, animal and phantom, respectively. The film density of trachea part were 0.76(${\pm}0.011$) in human, 0.97(${\pm}0.015$) in animal, 0.45(${\pm}0.016$) in phantom. The tracheobronchial bifurcation part measured 0.51(${\pm}0.006$) in human, 0.65(${\pm}0.005$) in animal, 0.65(${\pm}0.008$) in phantom. The right bronchus part measured 0.14(${\pm}0.008$) in human, 0.59(${\pm}0.014$) in animal and 0.04(${\pm}0.007$) in phantom. The left bronchus were 0.54(${\pm}0.004$) in human, 0.54(${\pm}0.008$) in animal and 0.08(${\pm}0.008$) in phantom. At the stent part were 0.54(${\pm}0.004$) in human, 0.59(${\pm}0.011$) in animal and 0.04(${\pm}0.007$) in phantom, respectively. The tracheobronchial angle of the left bronchus site were $42.6({\pm}2.07)^{\circ}$ in human, $43.4({\pm}2.40)^{\circ}$ in animal and $35({\pm}2.00)^{\circ}$ in phantom, respectively. The right bronchus site were $32.8({\pm}2.77)^{\circ}$ in human, $34.6({\pm}1.94)^{\circ}$ in animal and $50.2({\pm}1.30)^{\circ}$ in phantom, respectively. The phantom was useful for in-vitro testing of tracheobronchial interventional procedure, since it was easy to reproduce.

  • PDF

The Effect of X-ray Tube Potential on the Image Quality of Digital Chest Radiography with an Amorphus Silicon Flat Panel Detectors (비정질 평판형 측정기를 이용한 디지털 흉부 방사선 영상에서의 효과적인 관전압 선택)

  • Kim, Jung-Min;Im, Eun-Kyung
    • Journal of radiological science and technology
    • /
    • v.28 no.4
    • /
    • pp.273-277
    • /
    • 2005
  • The rapid development in digital acquisition technology in radiography has not been accompanied by information regarding optimum radiolographic technique for use with an amorphus silicon flat panel detector. The purpose of our study was to compared image quality and radiation dose of an amorphus silicon flat panel detectors for digital chest radiography. All examinations were performed by using an amorphus silicon flat panel detector. Chest radiographs of an chest phantom were obtained with peak kilovoltage values of $60{\sim}150kVp$. Published data on the effect of x-ray beam energy on image quality and patient dose when using an amorphus silicon flat panel detector. It is important that radiographers are aware of optimum kVp selection for an amorphus silicon flat panel detector system, particularly for the commonly performed chest examination.

  • PDF