• Title/Summary/Keyword: 휴대기기

Search Result 760, Processing Time 0.025 seconds

Secure Mutual Authentication Protocol for RFID System without Online Back-End-Database (온라인 백-엔드-데이터베이스가 없는 안전한 RFID 상호 인증 프로토콜)

  • Won, Tae-Youn;Yu, Young-Jun;Chun, Ji-Young;Byun, Jin-Wook;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.1
    • /
    • pp.63-72
    • /
    • 2010
  • RFID is one of useful identification technology in ubiquitous environments which can be a replacement of bar code. RFID is basically consisted of tag, reader, which is for perception of the tag, and back-end-database for saving the information of tags. Although the usage of mobile readers in cellular phone or PDA increases, related studies are not enough to be secure for practical environments. There are many factors for using mobile leaders, instead of static leaders. In mobile reader environments, before constructing the secure protocol, we must consider these problems: 1) easy to lose the mobile reader 2) hard to keep the connection with back-end-database because of communication obstacle, the limitation of communication range, and so on. To find the solution against those problems, Han et al. suggest RFID mutual authentication protocol without back-end-database environment. However Han et al.'s protocol is able to be traced tag location by using eavesdropping, spoofing, and replay attack. Passive tag based on low cost is required lots of communication unsuitably. Hence, we analyze some vulnerabilities of Han et al.'s protocol and suggest RFID mutual authentication protocol without online back-end-database in aspect of efficiency and security.

Laser Fabrication of Graphene-based Materials and Their Application in Electronic Devices (레이저 유도에 의한 그래핀 합성 및 전기/전자 소자 제조 기술)

  • Jeon, Sangheon;Park, Rowoon;Jeong, Jeonghwa;Hong, Suck Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • Here, we introduce a laser-induced graphene synthesis technology and its applications for the electric/electronic device manufacturing process. Recently, the micro/nanopatterning technique of graphene has received great attention for the utilization of these new graphene structures, which shows progress developments at present with a variety of uses in electronic devices. Some examples of practical applications suggested a great potential for the tunable graphene synthetic manners through the control of the laser set-up, such as a selection of the wavelength, power adjustment, and optical techniques. This emerging technology has expandability to electric/electronic devices combined together with existed micro-packaging technology and can be integrated with the new processing steps to be applied for the operation in the fields of biosensors, supercapacitors, electrochemical sensors, etc. We believe that the laser-induced graphene technology introduced in this paper can be easily applied to portable small electronic devices and wearable electronics in the near future.

Fabrication of 3D Paper-based Analytical Device Using Double-Sided Imprinting Method for Metal Ion Detection (양면 인쇄법을 이용한 중금속 검출용 3D 종이 기반 분석장치 제작)

  • Jinsol, Choi;Heon-Ho, Jeong
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.323-330
    • /
    • 2022
  • Microfluidic paper-based analytical devices (μPADs) have recently been in the spotlight for their applicability in point-of-care diagnostics and environmental material detection. This study presents a double-sided printing method for fabricating 3D-μPADs, providing simple and cost effective metal ion detection. The design of the 3D-μPAD was made into an acryl stamp by laser cutting and then coating it with a thin layer of PDMS using the spin-coating method. This fabricated stamp was used to form the 3D structure of the hydrophobic barrier through a double-sided contact printing method. The fabrication of the 3D hydrophobic barrier within a single sheet was optimized by controlling the spin-coating rate, reagent ratio and contacting time. The optimal conditions were found by analyzing the area change of the PDMS hydrophobic barrier and hydrophilic channel using ink with chromatography paper. Using the fabricated 3D-μPAD under optimized conditions, Ni2+, Cu2+, Hg2+, and pH were detected at different concentrations and displayed with color intensity in grayscale for quantitative analysis using ImageJ. This study demonstrated that a 3D-μPAD biosensor can be applied to detect metal ions without special analysis equipment. This 3D-μPAD provides a highly portable and rapid on-site monitoring platform for detecting multiple heavy metal ions with extremely high repeatability, which is useful for resource-limited areas and developing countries.

A Basic Study on the Development of a Mobile Data Sampling Method based on ESM to Examine Child-care Teachers' Emotional Experience (ESM기반 보육교사 정서 연구를 위한 데이터 표집기술 개발에 관한 기초연구)

  • Kim, Soojung;Lee, Yungil
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.199-206
    • /
    • 2017
  • The experience sampling method (ESM) is an innovative research method to study the immediate real emotional experience experienced in real life through the immediate reaction of research participants. ESM, which has received significant attention in recent, is considered as the research method particularly for child care teachers' emotions and happiness. This method has been shown to be able to overcome the limitations in current research methods, based on teachers' recall or surveys, in assessing child care teachers' emotional states or stress levels. Despite the expectation that the need for further research on the increased stress and negative emotional experiences of child care teachers and its appropriateness as the alternative research method to study child care teachers' immediate emotional experience, ESM has deficiencies in that research participants need to have their pencil-and-paper survey packages on hand whenever their electronic beepers randomly beep. Furthermore, ESM demands much more researcher energy and efforts to handle the voluminous data collected from each participant in effectively creating a database. In this paper, in order to apply ESM successfully to the study of child care teachers' emotional experience, we aim to develop a software program that uses mobile communication technology. Given that traditional types of data collection methods in social science research can prove too burdensome to encourage participation in surveys in the first place or ensure the return of completed surveys, the present study adopts a convergent research approach to develop a software program that is able to obtain ESM participants' answers immediately on their personal smart phones. This study deals with system construction and prototyping for software development as a basic research and evaluates the research results through indepth interview with experts.

Smartphone vs Wearable, Finding the Correction Factor for the Actual Step Count - Based on the In-situ User Behavior of the Two Devices - (스마트폰 vs 웨어러블, 실제 걸음 수 산출을 위한 보정계수의 발견 - 두 기기의 In-situ 활용 행태 비교를 바탕으로 -)

  • Han, Sang Kyu;Kim, Yoo Jung;An, A Ju;Heo, Eun Young;Kim, Jeong Whun;Lee, Joong Seek
    • Design Convergence Study
    • /
    • v.16 no.6
    • /
    • pp.123-135
    • /
    • 2017
  • In recent mobile health care service, health management using number of steps is becoming popular. In addition, a variety of activity trackers have made it possible to measure the number of steps more accurately and easily. Nevertheless, the activity tracker is not popularized, and it is a trend to use the pedometer sensor of the smartphone as an alternative. In this study, we tried to find out how much the number of steps collected by the smartphone versus the actual number of steps in actual situations, and what factors make the difference. We conducted an experiment to collect number of steps data of 21 people using the smartphone and wearable device simultaneously for 7 days. As a result, we found that the average number of steps of the smartphone is 62% compared to the actual number of steps, and that there is a large variation among users. We derived a regression model in which the accuracy of smartphone increases with the degree of awareness of smartphone. We expect that this can be used as a factor to correct the difference from the actual number of steps in the smartphone alone healthcare service.

The study of security management for application of blockchain technology in the Internet of Things environment (Focusing on security cases in autonomous vehicles including driving environment sensing data and occupant data) (사물인터넷 환경에서 블록체인 기술을 이용한 보안 관리에 관한 소고(주행 환경 센싱 데이터 및 탑승자 데이터를 포함한 자율주행차량에서의 보안 사례를 중심으로))

  • Jang Mook KANG
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.161-168
    • /
    • 2022
  • After the corona virus, as non-face-to-face services are activated, domain services that guarantee integrity by embedding sensing information of the Internet of Things (IoT) with block chain technology are expanding. For example, in areas such as safety and security using CCTV, a process is required to safely update firmware in real time and to confirm that there is no malicious intrusion. In the existing safe security processing procedures, in many cases, the person in charge performing official duties carried a USB device and directly updated the firmware. However, when private blockchain technology such as Hyperledger is used, the convenience and work efficiency of the Internet of Things environment can be expected to increase. This article describes scenarios in how to prevent vulnerabilities in the operating environment of various customers such as firmware updates and device changes in a non-face-to-face environment. In particular, we introduced the optimal blockchain technique for the Internet of Things (IoT), which is easily exposed to malicious security risks such as hacking and information leakage. In this article, we tried to present the necessity and implications of security management that guarantees integrity through operation applying block chain technology in the increasingly expanding Internet of Things environment. If this is used, it is expected to gain insight into how to apply the blockchain technique to guidelines for strengthening the security of the IoT environment in the future.

A School-tailored High School Integrated Science Q&A Chatbot with Sentence-BERT: Development and One-Year Usage Analysis (인공지능 문장 분류 모델 Sentence-BERT 기반 학교 맞춤형 고등학교 통합과학 질문-답변 챗봇 -개발 및 1년간 사용 분석-)

  • Gyeongmo Min;Junehee Yoo
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.3
    • /
    • pp.231-248
    • /
    • 2024
  • This study developed a chatbot for first-year high school students, employing open-source software and the Korean Sentence-BERT model for AI-powered document classification. The chatbot utilizes the Sentence-BERT model to find the six most similar Q&A pairs to a student's query and presents them in a carousel format. The initial dataset, built from online resources, was refined and expanded based on student feedback and usability throughout over the operational period. By the end of the 2023 academic year, the chatbot integrated a total of 30,819 datasets and recorded 3,457 student interactions. Analysis revealed students' inclination to use the chatbot when prompted by teachers during classes and primarily during self-study sessions after school, with an average of 2.1 to 2.2 inquiries per session, mostly via mobile phones. Text mining identified student input terms encompassing not only science-related queries but also aspects of school life such as assessment scope. Topic modeling using BERTopic, based on Sentence-BERT, categorized 88% of student questions into 35 topics, shedding light on common student interests. A year-end survey confirmed the efficacy of the carousel format and the chatbot's role in addressing curiosities beyond integrated science learning objectives. This study underscores the importance of developing chatbots tailored for student use in public education and highlights their educational potential through long-term usage analysis.

The Future of Radio and its Role in the Era of Smart Media (스마트미디어 시대 속 라디오의 미래와 역할 고찰)

  • KWON, Youngsung;SONG, Haeryong
    • Trans-
    • /
    • v.1
    • /
    • pp.117-139
    • /
    • 2016
  • Radio, the first broadcasting medium in history, is also the first mobile medium that meets the currently mobile ecology based on mobile communications network. As a result, it is easily approachable to consumers, can easily engage individual consumers, and its program contents have a huge appealing power to individual listeners, allowing it to form intimacy with audiences at the closest distance. However, the listening rating of radio has decreased greatly because it has experienced various changes by many other competitive media such as TV and internet and it has been influenced by relative constant hypothesis. Also, radio now faces a bigger competition due to the emergence of smartphone. In this circumstance, radio showed movements to evolve into a digital radio that presents improved sound, strengthened reception power, and increased number of channels, but it suddenly changed to DMB and portable multimedia DMB is having huge problems in its marketability due to smartphone. Yet, the listening rating of analogue radio broadcasting that remained unchanged was 13.99% in 2014, an increase by 47% from 2011, and the percentage of listeners under the age of 18 increased by 2.4 times from 2011 to 2014, which was a unique and interesting phenomenon. Accordingly, this paper compared the characteristics of internet and radio that have the traits of daily life, information, individuality, participatory, adventurousness, alternative media, expertise, and sound media. The paper then examined the listening method of radio, in which the direct groundwave antenna reception through a vehicular device is the most common form during the use of transportation means. Finally, it sought to investigate the future of radio based on the understanding of the increase in radio listening ratings, especially by comparing it to the characteristics of smart generation that focus on smartphone and the internet The study results demonstrated that entertainment and amusements are attempting at changes while they used to be obtained selectively by the smart generation from fragmentary information. In addition, radio is expected to become an influential medium in the future through its advantages of 'selected information' and reliability. However, considering such possibilities, radio needs to build the expertise and reliability of broadcasting contents much more at the same time as its digitalization, and it will be able to have its own competitiveness by focusing on various experiences and cultural exposures.

  • PDF

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

Optimization and Application Research on Triboelectric Nanogenerator for Wind Energy Based High Voltage Generation (정전발전 기반 바람에너지 수확장치의 최적화 및 고전압 생성을 위한 활용 방안)

  • Jang, Sunmin;Ra, Yoonsang;Cho, Sumin;Kam, Dongik;Shin, Dongjin;Lee, Heegyu;Choi, Buhee;Lee, Sae Hyuk;Cha, Kyoung Je;Seo, Kyoung Duck;Kim, Hyung Woo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.243-248
    • /
    • 2022
  • As the scope of use of portable and wearable electronic devices is expanding, the limitations of heavy and bulky solid-state batteries are being revealed. Given that, it is urgent to develop a small energy harvesting device that can partially share the role of a battery and the utilization of energy sources that are thrown away in daily life is becoming more important. Contact electrification, which generates electricity based on the coupling of the triboelectric effect and electrical induction when the two material surfaces are in contact and separated, can effectively harvest the physical and mechanical energy sources existing in the surrounding environment without going through a complicated intermediate process. Recently, the interest in the harvest and utilization of wind energy is growing since the wind is an infinitely ecofriendly energy source among the various environmental energy sources that exist in human surroundings. In this study, the optimization of the energy harvesting device for the effective harvest of wind energy based on the contact electrification was analyzed and then, the utilization strategy to maximize the utilization of the generated electricity was investigated. Natural wind based Fluttering TENG (NF-TENG) using fluttering film was developed, and design optimization was conducted. Moreover, the safe high voltage generation system was developed and a plan for application in the field requiring high voltage was proposed by highlighting the unique characteristics of TENG that generates low current and high voltage. In this respect, the result of this study demonstrates that a portable energy harvesting device based on the contact electrification shows great potential as a strategy to harvest wind energy thrown away in daily life and use it widely in fields requiring high voltage.