• Title/Summary/Keyword: 휴/폐광 금속광산

Search Result 11, Processing Time 0.029 seconds

Envionmental Problems of Abandoned Mining Sites and Their Recovery (폐광지역의 오염현황 및 환경관리 전략)

  • Chung, Jae-Chun;Lee, Moo-Choon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.5 no.1
    • /
    • pp.71-85
    • /
    • 1997
  • There are approximately 500 abandoned mining sites in Korea. Abandoned mines cause various environmental and safety problems such as landscape damage, soil, groundwater and stream pollution by heavy metal, acid mine drainage and soil erosion. According to the survey, there are significant numbers of mines causing environmental problems in Korea. For a environmentally sound management of abandoned mines, the Soil Pollution Control Act should include the regulation concerning soil pollution and recovery standards of the abandoned mines. Also, comprehensive survey about abandoned mines, setting-up of tile recovery priority, finance for clean-up are necessary.

  • PDF

Environmental Assessment of Heavy Metals Anna Abandoned Metalliferous Mine in Korea (국내 휴/폐광 금속황산 주변의 중금속 환경오염 평가)

  • 정명채;정문영;최연왕
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.21-33
    • /
    • 2004
  • The objective of this study is to review of environmental assessment of heavy metals derived from various metalliferous mines in Korea. As a results of national wide research for heavy metal contaminations in the vicinity of metalleferous mines, the main contaminants are mine waste materials including tailings. From the materials, toxic elements including As, Cd, Cu, Pb and Zn can be dispersed into downstream through wind and water. Thus, soils around the mines contain elevated levels of those elements, which are over the guide values for environmental regulation of soils in Korea. Arsenic is one of the most important elements contaminated by mining activities, to a less extent, Cd, Cu, Pb and Zn. In spite of remediation works for some metal mines by the government, there are still lots of abandoned mines which are necessary for reclamation of mining sites. This study also includes that metal concentrations in soils and tailings can be varied upon various decomposition methods including 0.1N HC1 and aqua regia and sequential extraction scheme, with differences in each element, too. This may be due to geochemical characteristics of the elements, such as solubility, mobility and chemical forms in the geochemical environment. Finally, it is suggested that a certain organization should be runned by Korean government for management of abandoned mines.

Fraction and Geoaccumulation Assessment Index of Heavy Metals in Abandoned Mines wastes (휴폐광산 지역에서 폐석의 중금속 존재 형태와 지화학적농축계수 평가)

  • Kim Hee-Joung;Park Byung-Kil;Kong Sung-Ho;Lee Jai-Young;Ok Yong-Sik;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.75-80
    • /
    • 2005
  • Several metalliferous including Guedo mine, Manjung mine and Joil mine located at the upper watershed of Namhan river, were abandoned or closed since 1988 due to the mining industry promotion policy and thus disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in soil pollution. In this research, total and fractional concentrations of heavy metals in mining wastes were analyzed and accordingly the degree of soil pollutions in the abandoned mine area were quantitatively assessed employing the several pollution indices. The mining waste samples from Guedo mine, Manjung mine and Joil mine recently abandoned were collected for the evaluation of the potential of water pollution by mining activities. Index of geoaccumulation fractional composition and removal efficiency of some heavy metals by different concentration of HCl treatment were analyzed. Index of geoaccumulation of Cd, Pb, Zn, Cu, Ni and Cr are 6, $4\~6,\;0\~6,\;4\~5$, 2 and 0 respectively. The index of geoaccumulation of Cd, Pb, Zn and Cu reveals the mining wastes has high pollution potential in the area. According to sequential extraction of metals in the mine wastes organic fraction of Cu, reducible fraction of Pb, residual fraction of Ni and Zn were the most abundant fraction of heavy metals in mining wastes.

Possibility and Countermeasures of Subsidence according to Mining Method and Current Status in the Operation Mines (가행광산 채광방식과 현황에 따른 지반침하 가능성과 대책)

  • Jang, Myoung Hwan;Lee, Sang-eun
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.366-376
    • /
    • 2017
  • In this paper, we investigated the subsidence possibility and countermeasures according to the current mining method through investigation of the subsidence condition in operation mine. Most of the metal mine were broken, investigating to subsidence pattern of the Sink-hole. Coal mines are becoming more and more deep, investigating to Trough type subsidence patterns in existing mining areas. History of nonmetallic mines have not been developed for over 30 years, but large and small ground deformation problems have been investigated. Mining also has ground subsidence functionality due to time dependence by relying more heavily on empirical methods than technical methods. Therefore, it is necessary to carry out the various researches on systematic development method and prevention of subsidence of nonmetallic mines.

Prediction of Spatial Distribution Trends of Heavy Metals in Abandoned Gangwon Mine Site by Geostatistical Technique (지구통계학적 기법에 의한 강원폐광부지 중금속의 공간적 분포 양상 예측 연구)

  • Kim, Su-Na;Lee, Woo-Kyun;Kim, Jeong-Gyu;Shin, Key-Il;Kwon, Tae-Hyub;Hyun, Seung-Hun;Yang, Jae-E
    • Spatial Information Research
    • /
    • v.20 no.4
    • /
    • pp.17-27
    • /
    • 2012
  • This study was performed to evaluate the spatial distribution of heavy metals using principal component analysis and Ordinary Kriging technique in the Gangwon Mine site. In the soils from the sub soil, the contents of Zn and Ni in the PC1 were gradually dispersed from south to north direction, while the components of Cd and Hg in the PC2 showed an increase significantly from middle-south area in the Gangwon Mine site. According to the cluster analysis, pollutant metals of As and Cu were presented a strong spatial autocorrelation structure in cluster D. The concentration of As was 0.83mg/kg and shown to increase from the south to north direction. The spatial distribution maps of the soil components using geostatistical method might be important in future soil remediation studies and help decision-makers assess the potential health risk affects of the abandoned mining sites.

A Study on Chemical Compositions of Sediment and Surface Water in Nakdong River for Tracing Contaminants from Mining Activities (광해오염원 추적을 위한 낙동강 지역 퇴적물 및 하천수의 화학조성 연구)

  • Kim, Jiyun;Choi, Uikyu;Baek, Seung-Han;Choi, Hye-Bin;Lee, Jeonghoon
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.211-217
    • /
    • 2016
  • There have been found mine tailings, wastes, and mining drainage scattered in the area of Nakdong River due to the improper maintenance of the abandoned mines. These contaminants can flow into rivers during the heavy rain periods in summer. Along the study area beginning Seokpo-myeon, Bonghwa-gun of Gyeongsangbuk-do untill Dosan-myeon, Andong-si, there are one hundred five mines including sixty metalliferous mines and forty-five nonmetal mines, which can adversely affect the adjacent rivers. To verify the contamination, we collected sediments, seepage water and surface water for a year both in rainy season and dry season. This study found that sediments, containing high concentrations of heavy metals caused by mining activities, are dispersed throughout the entire river basin (68 sample points with pollution index, based on the concentration of trace element, (PI) >10 among the total of 101 samples). The results of river water analysis indicated the increased concentrations of arsenic and cadmium at branches from Seungbu, Sambo, Okbang and Janggun mine, which concerns that the river water may be contaminated by mining drainage and tailing sediments. However, it is difficult to sort out the exact sources of contamination in sediments and waters only by using the chemical compositions. Thus the control of mining pollution is challenging. To prevent water from being contaminated by mining activities, we should be able to divide inflow rates from each origin of the mines. Therefore, there should be a continued study about how to trace the source of contaminants from mining activities by analyzing stable isotopes.

Comparison of Human Health Risk Assessment of Heavy Metal Contamination from Two Abandoned Metal Mines Using Metal Mine-specific Exposure Parameters (국내 폐금속 광산에 특화된 노출인자를 이용한 두 폐금속 광산 중금속 오염에 대한 인체위해성평가 비교)

  • Lim, Tae-Yong;Lee, Sang-Woo;Cho, Hyen Goo;Kim, Soon-Oh
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.414-431
    • /
    • 2016
  • There are numerous closed and abandoned mines in Korea, from which diverse heavy metals (e.g., As, Cd, Cu, Pb, Zn) are released into the surrounding soil, groundwater, surface water, and crops, potentially resulting in detrimental effects on the health of nearby residents. Therefore, we performed human risk assessments of two abandoned metal mines, Yanggok (YG) and Samsanjeil (SJ). The exposure parameters used in this assessment were specific to residents near mines and the included exposure pathways were relevant to areas around metal mines. The computed total excess carcinogenic risks for both areas exceeded the acceptable carcinogenic risk ($1{\times}10^{-6}$), indicating that these areas are likely unsafe due to a carcinogenic hazard. In contrast, the non-carcinogenic risks of the two areas differed among the studied receptors. The hazard indices were higher than the unit risk (=1.0) for male and female adults in YG and male adults in SJ, suggesting that there are non-carcinogenic risks for these groups in the study areas. However, the hazard indices for children in YG and female adults and children in SJ were lower than the unit risk. Consumption of groundwater and crops grown in the area were identified as major exposure pathways for carcinogenic and non-carcinogenic hazards in both areas. Finally, the dominant metals contributing to carcinogenic and non-carcinogenic risks were As and As, Cu, and Pb, respectively. In addition, the carcinogenic and non-carcinogenic risks of YG were evaluated to be 10 and 4 times higher than those of SJ, respectively, resulted from the relatively higher exposure concentration of As in groundwater within SJ area. Because of lacking of several exposure parameters, some of average daily dose (ADD) could not be computed in this study. Furthermore, it is likely that the ADDs of crop-intake pathway included some errors because they were calculated using soil exposure concentrations and bioconcentration factor (BCF) rather than using crop exposure concentrations.

The Assessment of pH Variation for Neutralized Acidic Areas using Lysimeters by Seasons (라이시미터를 이용한 중화처리된 산성화경사지의 계절별 pH 용탈특성 평가)

  • Oh, Seungjin;Oh, Minah;Park, Chan-O;Jung, Munho;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.79-86
    • /
    • 2015
  • Korean territories has formed about 70% of mountainous areas that have acidified serious level to average pH 4-5. There are a number of abandoned metal mines about 1,000 in Korea. However, mine tailings and waste rock included heavy metals are exposed to long-term environment without prevention facility or treatment system. Thus, ongoing management and monitoring of soil environment are required. Most of abandoned mine scattered in forest areas of slopes. Soil erosion due to continuous rainfall in the slopy areas can cause the secondary pollution by the influence eutrophication of water system and the productivity loss of the plant. Therefore, this study would like to estimate pH leaching rate by artificial rainfall using waste neutralization-agent in lysimeter. Moreover, the potentially of secondary pollution related to precipitation is figured out through the experiments, and the optimal planting methods would examinate after neutralizing treatment in soil. Experiments composed three kinds of lysimeter; lysimeter 1 had filled only acidic soil, lysimeter 2 had neutralized soil, and lysimeter 3 had planting plants after neutralized soil. In the results, lysimeter 2 showed the lowest pH leaching, and there is not specific relativity with pH leaching of the seasonal characteristics.

A Case Study of Mine Environmental Restoration using Coal Ash (발전회를 이용한 광산환경 복원사례 연구)

  • Yoo, Jong-Chan;Ji, Sang-Woo;Ahn, Ji-Whan;Kim, Chun-Sik;Shin, Hee-Young
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.80-88
    • /
    • 2017
  • Globally, there has been a lot of research related to recycling coal ash from power plant stations. This research is happening because there is a considerable shortage of sites for reclamation of increased coal ash every year. In addition, a variety of environmental pollutants have appeared because of mining activity. Abandoned coal mine, pits, and mine tailing piles caused pollutants to come to the surface resulting in serious damage for humans and the environment. Therefore in this study, we investigated whether or not coal ashes have the ability to prevent several environmental problems by mining in Korea and a manageable form recycling coal ashes. In overseas countries, there is a sufficient field of applicable cases where coal ash is used for neutralizing AMD (Acid Mine Drainage), covering of the waste materials, grouting, and soil amendments. However in Korea, since the coal ash is classified as a 'waste', there is an insufficient field applicable cases so far. Therefore it is necessary to establish a specific standard and management system for the utilization of coal ash based on the relevant precedent cases applied abroad in order to prevent environmental pollution caused by mining activity in Korea.