• Title/Summary/Keyword: 휨 부재

Search Result 683, Processing Time 0.035 seconds

Flexural Behavior of RC Beam Made of Slurry Infiltrated Fiber Concrete (슬러리 충전 강섬유 콘크리트로 제작된 RC 보의 휨 거동)

  • Han, Sang-Hoon;Jeon, Byeong-Gu;Hong, Ki-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.26-33
    • /
    • 2018
  • This paper presents experimental and analytical results on flexural behavior of flexural members made of SIFCON. Twelve SIFCON beams were subjected to bending tests and their flexural behavior was evaluated. Experimental variables included steel fiber type, presence of tensile reinforcement, and height of section. The specimens using Type-B steel fibers, which had better pullout resistance than Type-A steel fibers, showed flexural failure behavior without shear failure. The aspect ratio of steel fiber had a great influence on the behavior of SIFCON beams without tensile steel, however the effect on the behavior of SIFCON beams was negligible. In addition, the flexural strength equation for SIFCON was proposed in the study. The mean and standard deviation of the ratios of the predicted value to the experimental value are 1.02 and 0.04, respectively. Therefore, the proposed flexural strength equation can be useful for the design and performance evaluation of SIFCON beam.

Prediction of Bending Strength of Concrete Beams with Compressive Strength of 80 MPa (80 MPa의 압축강도를 갖는 콘크리트 보의 휨강도 예측)

  • Kim, Kyoung-Chul;Yang, In-Hwan;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.335-343
    • /
    • 2017
  • This paper aims at investigating the bending strength of high-strength concrete beams with compressive strength of 80 MPa. The experimental parameters included nominal yielding strength of rebar with 400 and 600 MPa, rebar ratio ranging from 0.98 to 1.97%, and shear span-effective depth ratios (a/d) of 6.0 and 4.8. Experimental results were discussed regarding load-deflection relationship, ductility, bending strength, and prediction of bending strength of beams. Test results indicate that the use of high-strength rebar increased bending strength but decreased ductility. As span-effective depth ratio increased, the ductility of test beams decreased. In addition, test results of bending strength were compared with predictions from the current KCI code, Eurocode 2 and Korean Highway Design Specification (KHDC). The design code predictions for bending strength underestimated the experimental results. Therefore, the current design code predictions for bending strength of high-strength concrete beams would provide conservative design. Predictions of bending strength from KCI code using strength reduction factors and those from Eurocode 2 as well as KHDC using material factors were similar each other.

An Examination of the Minimum Reinforcement Ratio for Reinforced Concrete Flexural Members (철근콘크리트 휨부재의 최소철근비에 대한 고찰)

  • Choi, Seung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.35-43
    • /
    • 2017
  • The minimum reinforcement ratio is an important design factor to prevent a brittle failure in RC flexural members. A minimum reinforcement ratio is presented by assuming an effective depth of cross-section and moment arm lever in CDC and KHBDC. In this study, it suggests that a rational method for minimum reinforcement ratio is calculated by material model and force equilibrium. As results, a minimum reinforcement ratio using a p-r curve in KHBDC is evaluated about 52~80% of recent design code's value and it induces an economical design. And also, a ductility capacity in case of placing this minimum reinforcement amount is evaluated about 89% of recent design code's value, but ductility in a member is 7 or more, so it has a sufficient ductility capacity. Therefore, it is judged that a minimum reinforcement ratio using p-r curve has a theoretical rationality, safety and economy in a flexural member design.

Evaluation on Flexural Strength and Shear Strength of RC Beams Extracted from Existing Apartment Housings (기존 공동주택에서 채취한 보의 휨 내력 및 전단내력 평가)

  • You, Young-Chan;Shin, Hyun-Seop;Choi, Ki-Sun;Lim, Byung-Ho;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.75-82
    • /
    • 2010
  • The static strengths of the existing RC beams were experimentally investigated in this paper to understand the strength characteristics of existing structural members and to get appropriate data in strengthening RC members in the remodelling construction. Ten RC beams were prepared by cutting and extracting directly from the demolition site of apartment housings and tested in order to evaluate the flexural and shear strengths of existing RC beams by their geometric condition. From the test results, it was found that most of the specimens had a sufficient structural capacity except for some special case, for example, specimens with severe cracks or concrete losses caused by improper casting. Therefore, the severely deteriorated members originated from bad concrete casting or careless construction process should be repaired and strengthened in remodelling construction.

Review of Steel ratio Specifications in Korean Highway Bridge Design Code (Limit States Design) for the Design of RC Flexural Members (철근콘크리트 휨부재 설계를 위한 도로교설계기준(한계상태설계법)의 철근비 규정 검토)

  • Lee, Ki-Yeol;Kim, Woo;Lee, Jun-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.277-287
    • /
    • 2017
  • This paper describes the specifications on balanced steel ratio and maximum reinforcement for the design of RC flexural members by the Korean Highway Bridge Design Code based on limit states design. The Korean Highway Bridge Design Code (Limit States Design) is not provide for the balanced steel ratio specification for the calculation of required steel area of RC flexural members design. The maximum steel area limited the depth of the neutral axis at the ultimate limit states after redistribution of the moment, and also recommended the maximum steel area should not exceed 4 percent of the cross sectional area. However, from the maximum neutral axis depth provisions should increase the cross section is calculated to be less the maximum reinforcement area, and according to the 4% of the cross sectional area of the concrete, the tensile strain of the reinforcement is calculated to be greater than double the yielding strain, so can not guarantee a ductile behavior. This study developed a balanced reinforcement ratio that is basis for the required reinforcement calculation for tension-controlled RC flexural members design in the ultimate limit states verification provisons and material properties and applied the ultimate strain of the concrete compressive strength with a simple formular to be applied to design practice induced. And assumed the minimum allowable tensile strain of reinforcement double the yielding strain, and applying correction coefficient up to the ratio of maximum neutral axis depth, proposed maximum steel ratio that can be applied irrespective of the reinforcement yield strength and concrete compressive strength.

Strengthening of Reinforced Concrete Continuous Beams in Flexure by Partial External Unbonded Tendons (철근콘크리트 연속보에서 부분프리스트레스 도입에 의한 휨보강 효과)

  • Yun, Hyun-Do;Yang, Il-Seung;Lim, Jea-Hyung;Moon, Jeong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.165-172
    • /
    • 2006
  • A variety of techniques for strengthening have been developed, including pate bonding, external prestressing and overslabbing. Expecially, a strengthening technique for reinforced concrete beams using external unbonded reinforcement offers advantages in speed and simplicity of installation. The purpose of this paper is to investigate the capabilities of a new retrofitting technique, namely external prestressing(out-cable), for flexural strengthening of beams. Results of 2 physical tests (external Post-tension and out-cable system specimen) on strengthened reinforced concrete continuous beams are reported and compared. It is shown that the out-cable system can provide strength enhancement.

An Experimental Study on the Flexural Capacity of RC Beams with High-Strength Reinforcement (고장력 철근이 배근된 RC보의 휨성능에 관한 실험적 연구)

  • Hong, Geon-Ho;Tak, So-Young;Jo, Jae-Yeol;Lee, Jae-Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.289-292
    • /
    • 2008
  • This paper studied experimentally on the structural performance and serviceability of RC beams with high-strength reinforcing bars. Following to the previous research, high-strength reinforcing bars have an negative effect on the deflection and crack depth. But, there are advantages about reducing amount of reinforcement than normal-strength reinforcing bars. So, the purpose of this paper is to analyze the effect of flexural performance on the beams with high-strength reinforcing bars. Three specimens were tested, and the main variable was the yield strength of the reinforcements; SD400, SD600 and SD700. Experimental results shows that the stiffness of members reduced when apply to high-strength reinforcement and equal reinforcement ratio. But the flexural strength of members increased to proportion to the strength and amount of reinforcement. Also, when high-strength reinforcement used, serviceability aspect do not appear to be affected because there is no change for crack number and maximum crack width.

  • PDF

Strain-Based Shear Strength Model for Prestressed Concrete Beams (프리스트레스트 콘크리트 보를 위한 변형률 기반 전단강도 모델)

  • Kang, Soon-Pil;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.197-200
    • /
    • 2008
  • An analytical model for predicting the shear strength of prestressed concrete beams was developed, applying the previously proposed strain-based shear strength model. In flexure-compression member without shear reinforcement, compression zone of intact concrete primarily resist to the shear force rather than tension zone. The shear capacity of concrete at the compression zone was defined based on the material failure criteria. The shear capacity of the compression zone was evaluated along the inclined failure surface considering interaction with the normal stress. Since the distribution of normal stress varies due to the flexural deformation of member, the shear capacity was defined as a function of the flexural deformation. Finally, the shear strength was determined at the intersection of the shear capacity curve and the shear demand curve. As a result of the comparisons to prior test data, the proposed model accurately predicted the shear strength of specimens.

  • PDF

An Experimental Study on the Deflection Estimation of RC Flexural Member by Corrosion of Reinforcement (철근 부식에 따른 철근콘크리트 휨 부재의 처짐 산정에 대한 실험적 연구)

  • Kim, Jee-Sang;Moon, Hyeong-Gab
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.143-151
    • /
    • 2021
  • Flexural test of reinforced concrete beam with corroded reinforcement were performed to measure the deflection, curvature and cracking moment for various bar diameter and amounts of corrosion. The amounts of corrosion are varied from 0% to 10% by weight and the bar diameters are chosen as 10mm, 13mm, and 19mm. The changes in reinforcement diameter do not affect the flexural behaviors significantly according to this experiment. If the amounts of corrosion is greater than 2%, the deflection and curvature of the beam increased and the cracking moment decreased. It means that the lower amounts of corrosion does not result structural damage in flexural member significantly as in direct tensile test. A modification factor considering an effect of amounts of corrosion is proposed based on the experiment, which can be used to determine the deflection of reinforced concrete beam with corroded reinforcement.

Ultimate Stress of Unbonded Tendons in Post-Tensioned Flexural Members (포스트텐션 휨부재에서 비부착긴장재의 극한응력)

  • Lee, Deuck-Hang;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.489-499
    • /
    • 2009
  • It is quite difficult to predict the flexural strength of post-tensioned members with unbonded tendons (unbonded posttensioned members, UPT members) because of debonding behavior between concrete and prestressing tendons, which is different from that with bonded tendons. Despite many previous researches, our understanding on the flexural strength of UPT members is still insufficient, and thus, national codes use different methods to calculate the strength, which quite often give very different results. Therefore, this paper reviews various existing methods, and aims at proposing an improved rational strength model for UPT flexural members having better accuracy. Additionally, a database containing a large number of test data on UPT flexural members has been established and used for verification of the proposed flexural strength model. The analysis results show that the proposed method provides much better accuracy than many existing methods including the rigid-body model that utilizes the assumption of concentrated deformation and plastic hinge length, and that it also gives proper consideration on the effects of primary parameters such as reinforcement ratio, loading pattern, concrete strength, etc. Especially, the proposed method also well predicts the ultimate stress of unbonded tendons of over-reinforced members, which are often possible in construction fields, and high strength concrete members.