DOI QR코드

DOI QR Code

An Experimental Study on the Deflection Estimation of RC Flexural Member by Corrosion of Reinforcement

철근 부식에 따른 철근콘크리트 휨 부재의 처짐 산정에 대한 실험적 연구

  • Received : 2021.03.05
  • Accepted : 2021.04.27
  • Published : 2021.06.30

Abstract

Flexural test of reinforced concrete beam with corroded reinforcement were performed to measure the deflection, curvature and cracking moment for various bar diameter and amounts of corrosion. The amounts of corrosion are varied from 0% to 10% by weight and the bar diameters are chosen as 10mm, 13mm, and 19mm. The changes in reinforcement diameter do not affect the flexural behaviors significantly according to this experiment. If the amounts of corrosion is greater than 2%, the deflection and curvature of the beam increased and the cracking moment decreased. It means that the lower amounts of corrosion does not result structural damage in flexural member significantly as in direct tensile test. A modification factor considering an effect of amounts of corrosion is proposed based on the experiment, which can be used to determine the deflection of reinforced concrete beam with corroded reinforcement.

이 논문에서는 철근 부식을 촉진시킨 휨 부재의 4점 재하 재하실험을 통하여 철근 지름 및 부식률의 변화에 따른 처짐과 곡률 및 균열모멘트의 변화를 측정하는 실험을 수행하였다. 부식률은 중량비로 0%, 2%, 5% 및 10%로 변화하였으며, 철근의 지름은 각각 10mm, 13mm 및 19mm로 하였다. 실험 결과에 따르면 처짐에 대한 철근 지름의 영향은 크지 않았으며, 철근의 부식률이 2%를 초과하는 경우 부식되지 않은 철근을 가진 부재에 비하여 처짐이 증가하고 균열모멘트가 감소하는 경향을 확인하였다. 이는 부식된 철근에 대한 직접인발 시험과 동일한 경향을 보이는 것이며, 철근의 부식률이 크지 않은 경우 휨거동에 대한 부식의 영향이 크지 않음을 의미한다. 또한, 철근이 부식된 철근콘크리트 부재의 처짐량을 산정하기 위하여 부식률에 따른 균열모멘트의 변화를 반영하는 처짐 보정계수를 도출하고 실험결과를 통하여 그 적용성을 확인하였다.

Keywords

Acknowledgement

이 연구는 국토교통부 건설기술연구개발사업의 연구비지원(20SCIP-B128487-01)에 의해 수행되었습니다.

References

  1. Ballim, Y., Reid, J.C. (2003). Reinforcement corrosion and the deflection of RC beams an experimental critique of current test methods, Cement & Concrete Composites, 25, 625-632. https://doi.org/10.1016/S0958-9465(02)00076-8
  2. Bhargava, K., Ghosh A.K., Mori, Y., Ramanujam, S. (2008). Suggested empirical models for corrosion-induced bond degradation in reinforced concrete, Journal of Structural Engineering, 134(2), 221-230. https://doi.org/10.1061/(asce)0733-9445(2008)134:2(221)
  3. CEB-FIP (1990). CEB-FIP Model Code 1990, Comite EuroInternational Du Beton, Paris, 247-251.
  4. Choi, S.W., Yang, J.H., Kim, W. (2010). Influence of tension stiffening effect on deflection and crack width in RC members, Journal of the Korea Concrete Institute, 22(6), 761-768. https://doi.org/10.4334/JKCI.2010.22.6.761
  5. Eurocode 2 (2004). Design of Concrete Structures Part 1-1: general Rules and Rules for Buildings, European Committee for Standardisation, Brussels.
  6. Jung, W.Y., Kwon, M.H., Ahn, M.K. (2011). Structural behavior of compressive and flexural members due to corroded reinforcing bars and different bonding interfaces, Journal of Disaster Management, 11(5), 33-39.
  7. KCI. (2012). Concrete Structure Standards.Commentary.
  8. KSA. (2016). KS F 2408 : 2016 Standard Test Method for Flexural Strength of Concrete.
  9. KSA. (2017). KS F 2405 : 2010 Standard Test Method for Compressive Strength of Concrete
  10. KSA. (2016). KS F 2423 : 2016 Standard Test Method for Tensile Splitting Strength of Concrete.
  11. KSA. (2018). KS B 0802 : 2003 Method of Tensile Test for Metallic Materials.
  12. Kim, W. (2014). Limite State Design of Concrete Structures, DongHwa Technology Publishing, Seoul.
  13. Park, Y.J. (2004). Experimental Research on Bond Characteristics and Tensile Strength by Corrosion of Reinforcement Steels, Master's Thesis, Tong-Myong Univ.
  14. Stanish, K., Hooton, R.D., Pantazopoulou, S.J. (1999). Corrosion effects on bond strength in reinforced concrete, ACI Structural Journal, 96(6), 915-921.
  15. Yang, X., Zhu, H. (2012). Finite element investigation on load carrying capacity of corroded RC beam based on bond-slip, Jordan Journal of Civil Engineering, 6(1), 134-146.