• Title/Summary/Keyword: 휨 변형

Search Result 663, Processing Time 0.021 seconds

A Study on the Physcial and Mechanical Properties of Hot - Compressed Wood (열압처리(熱壓處理) 목재(木材)의 이학적(理學的) 성질(性質)에 관(關)한 연구(硏究))

  • Park, Young-Kyu;Chung, Dae-Kyo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.45-58
    • /
    • 1987
  • This study was carried out to improve the physical and mechanical properties of Pupulus alba $\times$ glandulosa treated by the heat and compression. The results obtained were as follows. 1. The specific gravity of the wood was conspicuously increased by the lincreasing of pressing level. 2. The shrinkage of the wood was increased. by the increasing of pressing level. The radial shrinkage was 6.41-8.81%, the tangential shrinkage was 8.98-19.81 %, and the longitudinal shrinkage was 1.46-1.91 %. Comparing to the untreated stock, the rate of increase was 48.7-104.4% in radial direction. 1.7-124.4% in tangential direction and 60.4-109.9% in longitudinal direction, respectively. 3. The rate absorption of 30% compressed stock was Similar to that of untreated stock. but the rate of absorption of 40 % or more compressed stock was increased highly. 4. The thickness swelling of the wood was not changed in radial direction at pressing level, but was conspicuously increased in tangential direction under the pressing level of 40% and 50%. 5. The heat and compression treatment affected on the mechanical properties of the wood. The longitudinal compressive strength was increased under the pressing level of up to 40%, but was decreased under the pressing level of 50%. The bending strength was not changed under the compression percentage of up to 30%, but was decreased under the pressing level of 30% or more. And, the absorbed energy in impact bending was increased to 128% under the pressing level of up to 30%, but was decreased under the pressing level of 30% or more. Conclusionly, the mechanical properties of the wood was improved by the heat and compression treatment, but the strength of the wood was decreased under the pressing level of a certain level or more(in this study, pressing level of 30% or more). This was because of the wood deterioration due to the deformation(shrinkage, crack, failure) of wood tissues induced by the heat and compression treatment, the heat analysis of wood components induced by the heating, and the drop of the degree of polymerization.

  • PDF

Analysis on the Displacement Constraints of Frames for Plastic Film Greenhouse (플라스틱 필름 온실용 구조재의 변위제한 검토)

  • Yun, Sung-Wook;Choi, Man-Kwon;Lee, Siyoung;Kang, Donghyeon;Kim, Hyeon-Tae;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.273-281
    • /
    • 2016
  • In this study, after carrying out a bending test that targeted the frames of plastic film greenhouse, the load-displacement relationship was analyzed to be used as basic data to develop greenhouse construction and maintenance guidelines. As a result, regardless of the shapes of the specimen, the yield and the maximum load increased as the size of the specimen increased. The displacement also showed the same pattern. A steel pipe showed lower yield and maximum load than a square pipe, and the displacement was large. In the steel pipe case, the displacement under the yield and maximum load was in the range of approximately 1.42-4.20mm and 5.80-24.13mm, respectively. In the square pipe case, the displacement under the yield and maximum load was in the range of approximately 1.62-3.00mm and 3.13-8.01mm, respectively. Further, a large difference was observed between the result of this test and the values calculated by a conventionally provided standard. In particular, not much difference was found from the result of this test in the case of a purlin member from the values provided by previous researches. However, a large difference was observed in the column or main rafter members. Furthermore, when a wide-span and venlo type, which is a glasshouse, was used as a target(h/100 and h/80), the displacement under the yield and maximum load was approximately 28.0mm and 35.0mm, respectively, which showed a large difference compared with the Netherlands standard(14.0mm) of a glasshouse. Further, in the main rafter case, a large difference was observed in the displacement limit according to the width(i.e., span) of the greenhouse where members are used. Therefore, because the displacement limit can vary depending on various factors such as type, form, and size of a greenhouse, we determined that studies or tests that consider these factors should be carried out to reflect them in the construction and maintenance of greenhouses.

Analysis of the Effect of Corner Points and Image Resolution in a Mechanical Test Combining Digital Image Processing and Mesh-free Method (디지털 이미지 처리와 강형식 기반의 무요소법을 융합한 시험법의 모서리 점과 이미지 해상도의 영향 분석)

  • Junwon Park;Yeon-Suk Jeong;Young-Cheol Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.67-76
    • /
    • 2024
  • In this paper, we present a DIP-MLS testing method that combines digital image processing with a rigid body-based MLS differencing approach to measure mechanical variables and analyze the impact of target location and image resolution. This method assesses the displacement of the target attached to the sample through digital image processing and allocates this displacement to the node displacement of the MLS differencing method, which solely employs nodes to calculate mechanical variables such as stress and strain of the studied object. We propose an effective method to measure the displacement of the target's center of gravity using digital image processing. The calculation of mechanical variables through the MLS differencing method, incorporating image-based target displacement, facilitates easy computation of mechanical variables at arbitrary positions without constraints from meshes or grids. This is achieved by acquiring the accurate displacement history of the test specimen and utilizing the displacement of tracking points with low rigidity. The developed testing method was validated by comparing the measurement results of the sensor with those of the DIP-MLS testing method in a three-point bending test of a rubber beam. Additionally, numerical analysis results simulated only by the MLS differencing method were compared, confirming that the developed method accurately reproduces the actual test and shows good agreement with numerical analysis results before significant deformation. Furthermore, we analyzed the effects of boundary points by applying 46 tracking points, including corner points, to the DIP-MLS testing method. This was compared with using only the internal points of the target, determining the optimal image resolution for this testing method. Through this, we demonstrated that the developed method efficiently addresses the limitations of direct experiments or existing mesh-based simulations. It also suggests that digitalization of the experimental-simulation process is achievable to a considerable extent.

Effects of Vertical Spacing and Length of Reinforcement on the Behaviors of Reinforced Subgrade with Rigid Wall (보강재 간격 및 길이가 강성벽 일체형 보강노반의 거동에 미치는 영향)

  • Kim, Dae-Sang;Park, Seong-Yong;Kim, Ki-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.27-35
    • /
    • 2012
  • Facings of mechanically stabilized earth retaining walls have function to fix the reinforcement and prevent backfill loss, but the walls are lack of structural rigidity capable of resisting applied loads. The reinforced subgrade with rigid wall was developed to have the structural functions under train loading. Though it has lots of advantages such as small deformation after construction, its negative side effects of economics and difficult construction were mainly mentioned and not practically used. To apply it for railroad subgrade, this study focus on the construction cost down and the enhancement of constructability without functional loss. To do so, the behaviors of reinforced subgrade with rigid wall were evaluated with the change of the vertical spacing and length of reinforcement. Small scale model tests (1/10 scale) and 3 m full scale tests were performed to evaluate deformation characteristics of reinforced subgrade under simulated train loading. Even though it uses short reinforcement, it showed small horizontal displacement of wall and plastic settlement of subgrade. Also, it was verified that not only 30 cm but also 40 cm of vertical spacing of reinforcement had good performance in serviceability aspects.

Mixed Mode Analysis using Two-step Extension Based VCCT in an Inclined Center Crack Repaired by Composite Patching (복합재료 팻칭에 의한 중앙경사균열에서 2단계 확장 가상균열닫힘법을 사용한 혼합모우드해석)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.11-18
    • /
    • 2012
  • This paper deals with the numerical determination of the stress intensity factors of cracked aluminum plates under the mixed mode of $K_I$ and $K_{II}$ in glass-epoxy fiber reinforced composites. For the stress intensity factors, two different models are reviewed such as VCCT and two-step extension method. The p-convergent partial layerwise model is adopted to determine the fracture parameters in terms of energy release rates and stress intensity factors. The p-convergent approach is based on the concept of subparametric element. In assumed displacement field, strain-displacement relations and 3-D constitutive equations of a layer are obtained by combination of 2-D and 1-D higher-order shape functions. In the elements, Lobatto shape functions and Gauss-Lobatto technique are employed to interpolate displacement fields and to implement numerical quadrature. Using the models and techniques considered, effects of composite laminate configuration according to inclined angles and adhesive properties on the performance of bonded composite patch are investigated. In addition to these, the out-of-plane bending effect has been investigated across the thickness of patch repaired laminate plates due to the change of neutral axis. The present model provides accuracy and simplicity in terms of stress intensity factors, stress distribution, number of degrees of freedom, and energy release rates as compared with previous works in literatures.

Evaluation of Strengthening Performance of Stiff Type Polyurea Retrofitted RC Slab Based on Attachment Procedure (경질형 폴리우레아의 개발 및 보강 순서에 따른 RC 슬래브의 성능 평가)

  • Kim, Jang-Ho Jay;Park, Jeong-Cheon;Lee, Sang-Won;Kim, Sung-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.511-520
    • /
    • 2011
  • Recent studies to improve reinforcement of structures have developed stiff type Polyurea by using highly polymized compound Polyurea, but the reinforcing effect of it appears to be merely good. To find the proper usage of Polyurea as structural reinforcement, stiff type Polyurea has developed by manipulating the ratio of the components that consist flexural type Polyurea and the developed stiff type Polyurea shows higher hardness and tensile capacity. The reinforcement effect evaluation of has been performed by the polyurea applied RC slab specimens, and the reinforcement effect of the combination of fiber sheet and polyurea has been tested. The results shows that the Polyurea applied specimens have significant improvement on hardness and ductility compare to those of unreinforced. Also, the specimens that stiff type Polyurea is sprayed on fiber sheet reinforcement has higher reinforcing effect than only sheet reinforced specimens. However, the specimens that and fiber sheet attached after polyurea applied on showed that the high toughness of fiber sheet restrains the ductile behavior of Polyurea due to the high ductility, thereby the specimen suffers the concentration of load, which leads the brittle fracture behavior.

Ultimate Capacity of Guardrail Supporting Pile Subjected to Lateral Impact Load Using Centrifuge Model Test (원심모형실험을 통한 차량방호울타리 지지말뚝의 수평방향 충격하중에 대한 극한지지력)

  • Yun, Jong Seok;Lee, Min Jy;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.25-36
    • /
    • 2019
  • The safety barrier is installed on road embankment to prevent vehicles from falling into road side slope. Among the safety barrier, flexible guardrails are usually installed. The flexible guardrail generally consists of a protection cross-beam and supporting in-line piles. These guardrail piles are installed nearby slope edge of road embankment because the side area of the road is much narrow. The protection cross-beam absorbs impact energy caused by vehicle collision. The pile-soil interaction also absorbs the rest of the impact energy and then, finally, the flexible guardrail system resists the impact load. This paper aims to investigate the pile-soil interaction subjected to impact load using centrifuge model tests. In this study, a single pile was installed in compacted residual soil and loaded under lateral impact load. An impact loading system was designed and developed available on centrifuge tests. Using this loading system, a parametric study was performed and the parameters include types of loading and ground. Finally, the ultimate bearing capacity of supporting pile under impact load was analyzed using load-displacement curve and soil reaction pressure distributions at ultimate were evaluated and compared with previous studies.

Ductile Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder (초고강도 섬유보강 콘크리트 분절형 박스거더의 연성 거동)

  • Jeong, Min-Seon;Park, Sung-Yong;Han, Sang-Mook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.282-289
    • /
    • 2017
  • The flexural behavior tests of UHPC segmental Box girder which has 160MPa compressive strength and 15.4m length were carried out. The test variables are area of prestressing wires, volume fraction of steel fibers and longitudinal reinforcing bars in upper flange and web. PS tendons which has 32 strands of 15.2mm diameter in lower flange, 24 strands and 14 strands in lower flange were arranged and volume fraction of 2%, 1.5% and 1.0% is used in box girder concrete. UHPFRC box girder which has 32 strands in lower flange showed the over reinforcement and brittle behavior. UHPFRC box girder which has 24 strands showed the similar peak load as 32 strands girder and ductile behavior as large deflection. UHPFRC box girder which has 14 strands showed half of the peak load of 24 strands box girder and ductile behavior. After the application of the formular for the reinforcement index to the behavior of the UHPFRC box girders, reinforcement index does not determine the characteristic of behavior of UHPFRC box girder exactly. So the index should consider the dimension precisely and modify the reference value corresponding to the 0.005 strain of the prestressing strands.

Study of a Mixed Finite Element Model for the Analysis of a Geometrically Nonlinear Plate (기하학적 비선형 판재 해석을 위한 혼합형 FE Model 연구)

  • Kim, Woo-Ram;Choi, Youn-Dae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1427-1435
    • /
    • 2010
  • A mixed finite element model was developed using the classical plate theory to analyze the nonlinear bending of a plate. The appropriate weight functions for the constraints integrated over the domain were determined by the Lagrange multiplier method by using the principle of minimum virtual energy; which provides the constitutive relations between force-like variables and strains. All of detail terms of element wise coefficient matrices and associate tangent matrices to be used in the Newton iterative method are presented. Then, the linear solutions of the current model and those of the traditional displacement model under the SS (simple support) boundary conditions were compared with the existing analytical solution. The post-processed images of the nonlinear results of the force-like variables are presented to show the continuity of the solutions at the joint of the element boundaries. Finally, the converged nonlinear finite element solutions of the current model are compared with those of existing traditional displacement model.

Initial Imperfection and Axial Strength of Struts with Octagonal Hollow Section fabricated from HR Plate (열연강판 팔각강관 버팀보의 초기편심과 축방향 압축강도)

  • Jo, Jae Byung
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Developed in this study were Octagonal-hollow-section(OHS) struts, whose compressive strengths against flexural and local buckling is higher than H-shape or rectangular-hollow-section(RHS) struts with the same unit weight. OHS members are also advantageous in handling and storing compared to circular hollow sections(CHS). OHS members were fabricated from HR Plates by cold forming and fillet welding. 5 numbers of 20m long OHS struts were assembled, each of which consist of two 9.6m long OHS member and two end connection elements made of cast iron. The compressive strength of the OHS strut was evaluated by comparing the test results, design codes and FEM analysis each other. Test results show that all of the struts have almost same or larger compressive strength than Korean Road Bridge Design Code(KRBDC) (2012). The initial imperfections can be estimated by using measured strains and are turned out to be less than L/450 for all the struts tested. The results of FEM analysis show that the variation of initial imperfection has less effects on the compressive strength for struts with vertical surcharge than for those with self-weight only, while the strength decreases as the initial imperfection increases. As the result of this study, the allowable initial imperfection for 20m long OHS struts is recommended to be less than L/350 on job sites.