• Title/Summary/Keyword: 휨효율

Search Result 216, Processing Time 0.025 seconds

A Study on Flexural Strength of Prominent Section of SC Beams (요철단면 SC보의 휨 내력에 관한 연구)

  • Ryu, Soo-Hyun;Ahn, Hyung-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.197-204
    • /
    • 2006
  • This experimental study of prominent section bending behavior beam without shear connector provides bond capacity between concrete profile and initial stiffness of SC beam by comparing the test result with a theological analysis result and an ANSYS(common structural analysis program) analysis result. The compared result provides a fundamental study for practical use of efficient SC beam. Test result indicates 88%-98% rate of theological result in moment capacity and composition ratio shows 30%-70%. In other words, the results are insufficient to make a complete composite action. Therefore, it is need to make pull shear connection of connection method.

Estimation of Orthotropic Flexural Rigidities Considering the Deformed Shape for a Plate Stiffened with Rectangular Ribs (변형 형상을 고려한 평강 리브 보강판의 직교이방성 휨강성 산정)

  • Chu, Seok Beom;Im, Kwan Hyuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.621-632
    • /
    • 2007
  • The purpose of this study was the estimation and formulation of orthotropic flexural rigidities considering the deformed shape for a plate stiffened with rectangular ribs. Analytical results of methods modifying the flexural rigidity of the x-direction, the y-direction or both directions were compared at the center, the x-directional quarter point and the y-directional quarter point of stiffened plates loaded at the center. The composite method modifying the flexural rigidity of both directions improves the accuracy compared with the other methods. Moreover, the ratio of modified coefficients for each directional rigidity can be expressed as a function corresponding to each dimension of stiffened plates. The application of modified coefficient functions to various types of stiffened plates with different boundary conditions, aspect ratios and rib arrangement shows that the increment of the error ratio is small compared with examples of this study and the application of proposed functions shows more accurate results than previous methods modifying the flexural rigidity. Therefore, by using the modified coefficient functions proposed in this study, the orthotropic plate analysis of plates stiffened with rectangular ribs can easily achieve more accurate displacement results.

Evaluation of Nominal Flexural Strength in RC Beams Strengthend with CFRP Plate and Failed by Intermediate Crack Debonding (중간부 부착파괴된 CFRP 판 보강 RC 보의 휨강도 평가)

  • Hong, Sung Nam;Park, Jong In;Kim, Tae Wan;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.101-112
    • /
    • 2011
  • This paper shows a study carried out on the estimation of nominal flexural strength for CFRP-plated RC beams failed by intermediate crack debonding. A strength reduction factor is proposed to consider the effect of the intermediate crack debonding for the determination of nominal flexural strength. The proposed factor is derived from experimental data and utilizes the ratio of effective stress(or strain) in the CFRP plate to its ultimate strength(or strain) which is called effective strain model. An analytical equation for the estimation of the nominal flexural strength is formulated as a function of strength reduction factor. The validity, accuracy and efficiency of the proposed factor are established by comparing the analytical results with the experimental data, and the major design codes, as well as a number of factors given by researchers. The analytical results presented in this paper indicate that the proposed factor can effectively estimate the flexural nominal strength of CFRP-plated reinforced concrete beams failed by intermediate crack debonding.

Mechanical Properties of Composite Materials Composed of Structural Steel and Structural Glued Laminated Timber (구조용 강철과 구조용 집성재 복합재료 보의 역학적 성질)

  • Jang, Sangsik;Kim, Yunhui;Jang, Youngik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.300-309
    • /
    • 2009
  • The effective utilization of wood structure is encouraged to preserve natural resources and the global environment. Long-span and large-scale structures are preferred to promote demand for wood. This study attempts to develop new Fire-resistance Composite Material composed of Structural steel and Structural glued laminated timber for long-span and large-scale structures. Prior to take a fire-resistance test, compare properties of bending strength with Composite material composed of Structural steel and Structural glued laminated timber, structural steel and structural provides the stability of the structure, but the structural glued laminated timber has high value elasticity of bending. Using the Composite material will improve structural stability and Eco-friend construction environment.

An Experimental Study on the Behaviours of Reinforced Concrete Beam with Openning (철근 콘크리트 유공보의 거동에 관한 실험적 연구)

  • Kim, Cheol-Hwan;Jung, Hwan-Mok;Lee, Chang-Dae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.57-63
    • /
    • 2004
  • Many researches have been conducted to describe the structural behaviour of reinforced concrete beams with openings, and were generally concentrated on the shear behaviours. The objective of this paper is to study the shear and bending capacities of RC beams with openning. In experimental study, a total of seven RC beam with circular opennings under monotonic loading conditions were investigated. The parameters used in this study include the openning size and the existence of re-bar.

  • PDF

Suggestion of Flexural Strengthening Ratio of NSM Strengthened Concrete Railroad Bridge based on Probability and Reliability (확률.신뢰도에 기초한 표면매립보강(NSM) 콘크리트 철도교의 휨보강비 산정)

  • Oh, Hong-Seob;Sim, Jong-Sung;Ju, Min-Kwan;Lee, Ki-Hong;Park, Ji-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.121-124
    • /
    • 2008
  • The purpose of this study is to evaluate the critical strengthening ratio of concrete railroad bridge strengthened with NSM using CFRP plate. The railroad bridge is usually under vibration and impact in service state. Therefore, it is important that the effective strengthening performance must be exhibited under the service loading is acted. To widely apply the NSM method for the concrete railroad bridge in field, it needs that reasonable strengthening parameter such as strengthening ratio has to be investigated and evaluated when the strengthening design is conducted. In this study, to suggest more reasonable strengthening ratio, material and geometrical uncertainty was considered and applied by Monte Carlo Simulation (MSC) technique. Lastly, the critical strengthening ratio of concrete railroad bridge strengthened with NSM using CFRP plate was evaluated by using the limit state function with the target reliability index.

  • PDF

Evaluation of Flexural Behavior of Prestressed Composite Beams with Corrugated Webs (파형웨브 프리스트레스트 합성보의 휨거동 평가)

  • Oh, Jae-Yuel;Lee, Deuck-Hang;Kim, Kang-Su;Kang, Hyun;Lee, Sofia;Bang, Yong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.39-40
    • /
    • 2010
  • The demands for longer span and reduction of story height have greatly increased as building structures become much larger and higher in recent years. Although the development of flexural members for reducing story height or making long span has been studied by many researchers and engineers, there is still a lack of efficient systems that meet these two demands simultaneously. This study aimed at developing a new composite beam system suitable for long span and reduction of story height, and proposed a prestressed composite beam with corrugated web. It has great resistance against non-symmetric construction load due to its strong out-of-plane shear strength with relatively small member height as well as good constructability and economic efficiency by removing/minimizing form work. The corrugated webs also make accordion effect introducing larger effective prestressing force to top and bottom flanges, which causes larger upward camber reducing the member deflection. Five full-scale specimens with key test parameters, which are web sectional shapes and number of drape points, were tested to understand their flexural behavior and to verify the performance of the proposed method. The experimental test results showed that the proposed prestressed composite beam had greater flexural strength and stiffness than the ordinary non-prestressed composite beam.

  • PDF

Dynamic Response of PSC I shape girder being used wide upper flange in Railway Bridge (확장된 상부플랜지 PSC I형 거더교의 동특성 및 동적안정성 분석)

  • Park, Jong-Kwon;Jang, Pan-Ki;Cha, Tae-Gweon;Kim, Chan-Woo;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.125-135
    • /
    • 2015
  • The tendency of more longer span length being required economical in railway bridges is studying about PSC I shaped girder. In this case, it is important to analyze and choose the effective girder section for stiffness of bridge. This study investigates the dynamic properties and safety of PSC I shaped girder being used wide upper flange whose selection based on radii and efficiency factor of flexure for railway bridge in different span type. In addition, 40m PSC Box girder bridge adopted in Honam high speed railway is further analyzed to compare dynamic performance of PSC I shaped girder railway bridge with same span length. Time history response is acquired based on the mode superposition method. Static analysis is also analyzed using standard train load combined with the impact factor. Consequently, the result met limit values in every case including vertical displacement, acceleration and distort.

Effect of Green Tea and Saw Dust Contents on Dynamic Modulus of Elasticity of Hybrid Composite Boards and Prediction of Static Bending Strength Performances (이종복합보드의 동적탄성률에 미치는 녹차와 톱밥 배합비율의 영향 및 정적 휨 강도성능의 예측)

  • Park, Han-Min;Lee, Soo-Kyeong;Seok, Ji-Hoon;Choi, Nam-Kyeong;Kwon, Chang-Bae;Heo, Hwang-Sun;Byeon, Hee-Seop;Yang, Jae-Kyung;Kim, Jong-Chul
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.9-17
    • /
    • 2012
  • In this study, in addition to the green tea - wood fiber hybrid composite boards of previous researches, to make effective use of saw dust of domestic cypress tree with functionalities and application as interior materials, eco-friendly hybrid composite boards were manufactured from wood fiber, green tea and saw dust of cypress tree. We investigated the effect of the component ratio of saw dust and green tea on dynamic MOE (modulus of elasticity). Dynamic MOE was within 1.41~1.65 GPa, and showed the highest value in wood fiber : green tea : saw dust = 50 : 40 : 10 of the component ratio, and had the lowest value in 50 : 30 : 20 of component ratio. These values were 1.4~1.6 times higher than static bending MOE of wood fiber - saw dust - green tea hybrid composite boards, and were 2.0~2.9 times lower than those of green tea - wood fiber hybrid composite boards reported in the previous researches. From the results of correlation regression analyses between dynamic MOE and static strength performances, a very high correlation coefficients were obtained, therefore it was found that static bending strength performances can be estimated with a high reliability from dynamic MOE.

Evaluation of Flexural Performance of Eco-Friendly Alkali-Activated Slag Fiber Reinforced Concrete Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 알카리활성 슬래그 섬유보강콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2015
  • In this study, it was developed eco-friendly alkali-activated slag fiber reinforced concrete using ground granulated blast furnace slag, alkali activator (water glass, sodium hydroxides), and steel fiber. Eight reinforced concrete beam using alkali-activated slag concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, mixed/without of steel fiber. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The reinforced concrete beams using the eco-friendly alkali-activated slag fiber reinforced concrete was failed by the flexure or flexure-shear in general. In addition, the maximum strength increased with the adding the mol of sodium hydroxide, and the specimen reinforced the steel fiber showed the value of maximum strength which is increased by 15.8% through 25.9%. It is thought that eco-friendly alkali-activated slag fiber reinforced concrete can be used with construction material and product to replace normal concrete. If there is applied to structures such as precast concrete member and production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.