• Title/Summary/Keyword: 휨저항

Search Result 355, Processing Time 1.289 seconds

A Study on the Performance Evaluation of Precast Concrete Box Culvert with Blast Furnace Slag (고로슬래그를 이용한 프리캐스트 콘크리트 박스암거의 성능평가에 관한 연구)

  • Kim, Doo Hwan;Jung, Jun Young;Kim, Sung Pil;An, Man Bok;Tae, Gi Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.157-157
    • /
    • 2011
  • 프리캐스트 콘크리트 박스 암거는 현장 타설식 암거에 비해 구조물의 고품질화 및 반복적인 대량생산으로 원가 절감과 건식화 시공으로 인한 공정의 단순화와 공기가 단축되는 이점을 지니고 있다. 따라서 본 연구는 상재 허용하중을 확보하고, 시공성 및 내구성이 뛰어나며, 경제성을 고려한 고성능 프리캐스트 박스 암거를 개발하고 향후 고성능 프리캐스트 박스 암거를 생산하기 위한 기초적인 자료를 제시하고자 하였다. 본 연구에서는 기존의 보통 포틀랜드 시멘트를 이용한 프리캐스트 박스 암거의 경제성 및 내구성, 강도특성을 개선하고자 고로슬래그를 이용하여 최적의 배합비를 산출하고, 이를 토대로 중성화, 염해, 동결융해 등의 시험을 통해 내구성을 확보하고, 휨 성능을 확인하고자 실물박스암거를 제작하여 외압강도시험을 실시하였다. 또한 구조해석을 통해 응력검토를 하였다. 내구성 검토 결과, 분말도 $6,000cm^2/g$을 가진 고로슬래그 미분말을 50%로 혼입한 콘크리트가 보통 포틀랜드 시멘트를 사용한 콘크리트보다 염화물이온 투과성에 대한 저항성 및 동결융해 저항성 등 기초물성 및 내구성이 개선됨을 알 수 있었다. 박스암거에 대한 휨 시험 결과, OPC에 비해 GFSC6의 경우는 크게 구조적 성능이 떨어지지는 않는 것으로 나타났으며, 균열양상 및 연성도에서는 우수함을 나타냈다. ABAQUS에 의한 비선형 해석 결과는 시험체의 휨 거동을 잘 묘사하는 것으로 나타났으며, 처짐의 경우 시험체의 시험결과보다 크게 나타났지만, 처짐 양상은 비슷한 것을 알 수 있었고, 벽체와 상부 슬래브에 발생하는 응력은 부재가 허용하는 균열응력값 이내로 나타남에 따라 사용하중 상태에서의 응력검토는 안전한 것으로 판단된다.

  • PDF

Self-Diagnosis Properties of Fracture in Reinforced Concrete Intermixed with Conductive Materials (전도성 재료 혼입 철근콘크리트 구조체의 파괴예측 자기진단 특성)

  • Park, Seok-Kyun;Cho, Sung-Dong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.369-374
    • /
    • 2008
  • Two types of conductive materials are selected and their applicable properties are investigated so as to give the capability of self-diagnosis of fracture in composite mortar, concrete and reinforced concrete. In this study, for giving selfdiagnosis capability, the powder of cokes and milled carbon fiber as conductive materials are selected and intermixed with mortar, concrete and reinforced concrete. After examining change in the value of electric resistance before and after the occurrence of cracks at each flexural load-stage in composite mortar, concrete or reinforced concrete, the relationships of each factors (electric resistance, crack and flexural load) are analyzed. As the results, it can be recognized that conductive materials with powder of cokes and milled carbon fiber can be applied for self-diagnosis of flexural fracture in composite mortar, concrete and reinforced concrete specimen.

Flexural Reliability Assessment of PSC-I Girder Rail Bridge Under Operation (사용중 PSC-I 거더 철도 교량의 휨모멘트에 대한 신뢰도 분석)

  • Kim, Ki Hyun;Yeo, Inho;Sim, Hyoung-Bo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.187-194
    • /
    • 2016
  • It is necessary to determine reliability indexes of existing railway bridges prior to setting up a proper target reliability index that can be used to introduce a reliability based limit state design method to design practice. Reliability is evaluated for a six PSC-I girder railway bridge, which is one of many representative types of double-track railway bridges. The reliability assessment is carried out for an edge girder subjected to bending moment. In the assessment, the flexural resistance and the fixed-load effect were obtained using existing statistical values from previous research on the introduction of limit state design to road bridge design. On the other hand, the live-load effect was determined using statistical values obtained from field measurement for the Joong-ang corridor, on which heavy freight trains are frequently passing. The reliability assessment is performed by AFOSM(Advanced First Order Second Moment method) for the limit state equation, and a sensitivity analysis for the reliability is performed for each factor of the load and resistance effects.

Evaluation of Load Capacity Reduction in RC Beam with Corroded FRP Hybrid Bar and Steel (철근부식을 고려한 FRP Hybrid Bar 및 일반 철근을 가진 RC 보의 내력저하 평가)

  • Oh, Kyung-Suk;Moon, Jin-Man;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.10-17
    • /
    • 2016
  • Steel corrosion is a very significant problem both to durability and structural safety since reinforcement has to support loads in tensile region in RC(Reinforced Concrete) member. In the paper, newly invented FRP Hybrid Bar and normal steel are embedded in RC beam member, and ICM (Impressed Current Method) is adopted for corrosion acceleration. Utilizing the previous theory of Faraday's Law, corrosion amount is calculated and flexural tests are performed for RC beam with FRP Hybrid Bar and steel, respectively. Corrosion amount level of 4.9~7.8% is measured in normal RC member and the related reduction of flexural capacity is measured to be -25.4~-50.8%, however there are no significant reduction of flexural capacity and corrosion initiation in RC samples with FRP Hybrid Bar due to high resistance of epoxy-coated steel to corrosion initiation. In the accelerated corrosion test, excellent performance of anti-corrosion and bonding with concrete are evaluated but durability evaluation through long-term submerged test is required for actual utilization.

Strength Properties of Cement Mortar with Slurry-Typed Cellulous Fiber (슬러리형 셀룰로오즈 파이버를 혼입한 시멘트 모르타르의 강도 특성)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.210-215
    • /
    • 2019
  • Concrete members with wide surface area are vulnerable to cracking due to material behavior such as hydration heat and drying shrinkage. Recently many researches have been performed on improvement of strength and cracking resistance through fiber reinforcement, which are mainly focused on enhancement of tensile strength against cracking due to material behavior. In this paper, CFs(Cellulous Fibers) are manufactured for slurry type, and the engineering properties in cement mortar incorporated with CFs are evaluated for flow-ability, compressive, and flexural strength. Through SEM analysis, a pull-off characteristics of CF in matrix are analyzed. With CF addition of $0.5kg/m^3{\sim}1.0kg/m^3$, flexural strength is much improved and enough toughness of pull-off is also observed unlike plastic fiber containing smooth surface.

Static Behavior of Steel-Concrete Composite Beam with Perfobond Rib Shear Connector (Perfobond rib 전단연결재가 설치된 강.콘크리트 합성보의 정적거동)

  • Ahn, Jin Hee;Chung, Hamin;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.421-432
    • /
    • 2009
  • In this study, push-out and static loading tests were conducted to evaluate the behavioral characteristics of composite beams with a perfobond rib shear connector. The shear capacity of the perfobond rib was found to be proportional to its concrete strength, which is in turn affected by the increase in the concrete end-bearing strength and concrete dowel action to resist the shear force. The relative slips of the push-out specimen, however, which was used to assess the ductility of the shear connector, increased to some extent, but it no longer increased when it reached the critical concrete strength because of the flexibility of the transverse rebar in the rib hole. The static-loading-test results revealed a crack on the concrete slab in the composite beam with a perfobond rib on the side of the rib hole and transverse rebar for the applied moment and shear force to the rib hole, depending on the static loading. The shear resistance characteristics of the perfobond rib shear connector were found to resist the shear force from the relative slip on the interface of the composite beam. Thus, the sectional effect of the shear connector to the composite beam with a perfobond rib should be considered when designing the composite beam because the behavior of the composite beam can change owing to the shear connector.

Flexural Design of Double Composite Box Girder over Interior Pier by LRFD Method (LRFD법에 의한 이중합성 박스거더 최대부모멘트 단면 휨 설계)

  • Cho, Eun Young;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.737-749
    • /
    • 2007
  • Flexural design of double composite box girder over the interior pier for three-span continuous bridge was performed by the LRFD method. The maximum span length of the continuous bridge ranged from 80m to 120m and the relative ratio of the span length was assumed to be 1:1.25:1. The girder section was designed for the strength limit state and service limit state with additional design check for constructibility. Before the bottom concrete and compression flange showed a complete composite action, the buckling of lower compression flange was checked. The flexural stiffness and flexural resistance characteristics for the section and for the constituent members such as tension flange, compression flange, and web were analyzed for different thicknesses of the bottom concrete on top of the compression flange. The effect of the distribution ratio of steel between the top and bottom flanges was investigated by analyzing ductility behavior and stress distribution through the girder's depth for several different relative area ratios of steel between the top and bottom flanges. It was found that a total amount of 15% of steel can be saved by applying the double composite system compared with that of the conventional composite system.

Investigation of the Electromechanical Response of Smart Ultra-high Performance Fiber Reinforced Concretes Under Flexural (휨하중을 받는 스마트 초고강도 섬유보강 콘크리트의 전기역학적 거동 조사)

  • Kim, Tae-Uk;Kim, Min-Kyoung;Kim, Dong-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.57-65
    • /
    • 2022
  • This study investigated the electromechanical response of smart ultra-high performance fiber reinforced concretes (S-UHPFRCs) under flexural loading to evaluate the self-sensing capacity of S-UHPFRCs in both tension and compression region. The electrical resistivity of S-UHPFRCs under flexural continuously changed even after first cracking due to the deflection-hardening behavior of S-UHPFRCs with the appearance of multiple microcracks. As the equivalent bending stress increased, the electrical resistivity of S-UHPFRCs decreased from 976.57 to 514.05 kΩ(47.0%) as the equivalent bending stress increased in compression region, and that did from 979.61 to 682.28 kΩ(30.4%) in tension region. The stress sensitivity coefficient of S-UHPFRCs in compression and tension region was 1.709 and 1.098 %/MPa, respectively. And, the deflection sensitivity coefficient of S-UHPFRCs in compression region(30.06 %/mm) was higher than that in tension region(19.72 %/mm). The initial deflection sensing capacity of S-UHPFRCs was almost 50% of each deflection sensitivity coefficient, and it was confirmed that it has an excellent sensing capacity for the initial deflection. Although both stress- and deflection-sensing capacity of S-UHPFRCs under flexural were higher in compression region than in tension region, S-UHPFRCs are sufficient as a self-sensing material to be applied to the construction field.

Shear Strength Model for Slab-Column Connections (슬래브-기둥 접합부에 대한 전단강도모델)

  • Choi, Kyoung-Kyu;Park, Hong-Gun;Kim, Hye-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.585-593
    • /
    • 2010
  • On the basis of the strain-based shear strength model developed in the previous study, a strength model was developed to predict the direct punching shear capacity and unbalanced moment-carrying capacity of interior and exterior slab-column connections. Since the connections are severely damaged by flexural cracking, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the compressive normal stress developed by the flexural moment, the shear strength of the compression zone was derived on the basis of the material failure criteria of concrete subjected to multiple stresses. As a result, shear capacity of the critical section was defined according to the degree of flexural damage. Since the exterior slab-column connections have unsymmertical critical sections, the unbalanced moment-carrying capacity was defined according to the direction of unbalanced moment. The proposed strength model was applied to existing test specimens. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods.

The Mechanism of Load Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.113-123
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcements and the ratio of shear rebars. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. The increase of plastic deformation after yielding transforms the shear transfer by arch action into by truss action. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The strain distribution model of shear reinforcements and flexural reinforcements based on test results is presented. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The flexural-shear failure mechanism determines the ultimate state of RC coupling beams. It is expected that this model can be applied to displacement-based design methods.