• Title/Summary/Keyword: 휘도 보정알고리즘

Search Result 21, Processing Time 0.024 seconds

Adaptive Retinex Back-light Compensation Algorithm Using Skewness Information of Image (영상에서 비대칭도 정보를 이용한 적응적인 Retinex 역광 보정 알고리즘)

  • Jeong, Jae-Hyun;Kang, Duk-Goo;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8C
    • /
    • pp.497-504
    • /
    • 2011
  • This paper presents an adaptive retinex algorithm, In order to solve typical problems of retinex algorithm such as expensive computational cost, halo artifact, and color distortion, a function of skewness that represents a statistical distribution of pixels is defined to compensate contrast and color distortion. The experimental results show that the proposed algorithm leads to subjectively better performance than typical retinex algorithm, and that the proposed algorithm has the capability to reduce approximately 40% computational cost than typical retinex algorithm.

Luminance Correction Algorithm Based on Measuring Angle for the Portable Luminance Measurement System (휴대용 휘도측정시스템의 측정각도기반 휘도보정알고리즘)

  • Sun, Eun-Hey;Kim, Dongyeon;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.321-326
    • /
    • 2016
  • In this paper, we propose a luminance correction algorithm based on measuring position for potable luminance measurement system. Measurement position and angle have an affect on the luminance value. We improve the position-based luminance measurement system using luminance correction algorithm based on the measuring angle. We analyze change of luminance value according to the measurement distance and angle from camera and light source. The certified point-luminance meter is used to evaluate a scene luminance measuring method using the image information of camera. Also, we derive an expression equation for evaluating luminance value from determined position. The performances of the proposed system are verified by using comparative experiments with the point-luminance meter using experimental signboard.

Hardware Implementation of Low-power Display Method for OLED Panel using Adaptive Luminance Decreasing (적응적 휘도 감소를 이용한 OLED 패널의 저전력 디스플레이 방법 및 하드웨어 구현)

  • Cho, Ho-Sang;Choi, Dae-Sung;Seo, In-Seok;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1702-1708
    • /
    • 2013
  • OLED has good efficiency of power consumption by having no power consumption from black color as different with LCD. when it has white color, all RGB pixel should be glowing with high power consumption and that can make it has short life time. This paper suggest the way of low power consumption for OLED panel using adaptive luminance enhancement with color compensation and implement it as hardware. This way which is based on luminance information of input image makes converted luminance value from each pixel in real time. There is with using the basic idea of chromaticity reduction algorithm, showing new algorithm of color correction. And performance of proposed method was confirmed by comparing the conventional method in experiments about 48.43% current reduction. The proposed method was designed by Verilog HDL and was verified by using OpenCV and Windows Program.

A Study on the Image-Based Luminance Measurement System Using the Measuring Position (측정 위치를 고려한 영상기반 휘도측정시스템에 관한 연구)

  • Sun, Eun-Hey;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.424-429
    • /
    • 2014
  • In this paper, an image-based luminance measurement system(LMS) is proposed to measure the luminance of outdoor signboards. We design the LMS that can improve disadvantages of efficiency of the point-luminance meter and portability of face-luminance meter using the image of DSLR camera and print out the luminance value by using the proposed luminance analysis algorithm in real time. Outdoor signboards have various size and shape, and are also installed on the various place. Luminance of the signboard is influenced by measurement location, angle, color, etc. Therefore, we measure the change of luminance value in accordance with measurement location for accurate luminance measurement and then consider the luminance value according to the measurement distance. We obtain a numerical relation between luminance value and measurement location. The proposed LMS is verified through comparative experiment with point-luminance meter.

Luminance Correction for Stereo Images using Histogram Interval Calibration (히스토그램 구간 교정을 이용한 스테레오 영상의 휘도 보정)

  • Kim, Seaho;Kim, Hiseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.159-167
    • /
    • 2013
  • In stereo-view system, variations of target camera position or lighting conditions cause discrepancies on the luminance and chrominance components of stereo views. These discrepancies lead to inaccurate frame view prediction and low quality of 3 D video coding. In this paper, an efficient histogram interval calibration method is proposed for stereo-view coding, so as to compensate for the luminance component of target view. First the proposed method is analyzed by the histogram of the target image frame. Then, it divide two sections of histogram of that frame to correct the color discrepancies. Secondly, each section of the target frame is corrected the luminance component by identify the maximum matching region between the reference frame and the target frame. We have verified our proposed histogram matching method in comparison with the other color correction ones. Experimental results show that it can correct better luminance calibration results of PSNR(Peak Signal to Noise Ratio) and has less computation time.

Skewness based Adaptive Retinex Algorithm for Wide Dynamic Range (영상의 동적영역 확대를 위한 비대칭도 기반 적응적 Retinex 알고리즘)

  • Oh, Jonggeun;Kim, Beomsu;Hong, Min-Cheol
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.478-483
    • /
    • 2013
  • This paper presents an adaptive Retinex algorithm for improving dynamic range of image representation. The proposed Retinex algorithm detects degraded brightness by using skewness and the degraded components are compensated with local statistics. In particular, we propose a new compensation function for dynamic range so that effectinve image representation can be achieved. Experimental results show that the proposed algorithm has the capability to improve the dynamic range with reduction of color degradation.

Color reproduction algorithm considering background effect on a CRT display (CRT 디스플레이의 바탕 화면 영향을 고려한 색 재현 알고리즘)

  • 박승옥;김홍석;조대근
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.1
    • /
    • pp.38-46
    • /
    • 1998
  • In this study, the color reproduction algorithm considering both of luminace and chromaticity of the background light is presented and tested to BT-H 1450 monitor(Panasonic). In the case of neglecting the background effect, the Macbeth ColorChecker's 24 colors are reproduced with the average color difference ${\Delta}E_{ab}^{*}$ more than 9.0. By using this method, the average color difference ${\Delta}E_{ab}^{*}$ is decreased less than 1.0. From this study, we can find that both of luminance and chromaticity of background light are very important factors in the color reproduction on a CRT display.

  • PDF

A Deblocking Filtering Method for Illumination Compensation in Multiview Video Coding (다시점 비디오 코딩에서 휘도 보상 방법에 적합한 디블록킹 필터링 방법)

  • Park, Min-Woo;Park, Gwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.401-410
    • /
    • 2008
  • Multiview Video Coding contains a macroblock-based illumination compensation tool which can compensate the variations of illuminations according to view or temporal directions. Thanks to illumination compensation tool, the coding efficiency of Multiview Video Coding has been enhanced. However illumination compensation tool also generates additional subjective drawbacks of the blocking artifacts due to macroblock-based compensations of mean values. A deblocking filtering method for Multiview Video Coding which is the same as in H.264/AVC does not consider illumination difference between the illumination compensated blocks, thus it can not effectively eliminate the blocking artifacts. Therefore, this paper analyzes the phenomena of blocking artifacts caused by illumination compensation and proposes a method which can effectively eliminate the blocking artifacts with the minimum changes of the H.264 deblockding filtering method. In the simulation results, it can be easily found the blocking artifacts are clearly eliminated in the subjective comparisons, and the average bit-rate reduction is up to 1.44%.

Simulation of TOA Visible Radiance for the Ocean Target and its Possible use for Satellite Sensor Calibration (해양 표적을 이용한 대기 상단 가시영역에서의 복사휘도 모의와 위성 센서 검보정에의 활용 가능성 연구)

  • Kim, Jung-Gun;Sohn, Byung-Ju;Chung, Eui-Seok;Chun, Hyoung-Wook;Suh, Ae-Sook;Kim, Kum-Lan;Oh, Mi-Lim
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.535-549
    • /
    • 2008
  • Vicarious calibration for the satellite sensor relies on simulated TOA (Top-of-Atmosphere) radiances over various targets. In this study, TOA visible radiance was calculated over ocean targets which are located in five different regions over the Indian and Pacific ocean, and its possible use for the satellite sensor calibration was examined. TOA radiances are simulated with the 6S radiative transfer model for the comparison with MODIS/Terra and SeaWiFS measurements. Geometric angles and sensor characteristics of the reference satellites were taken into account for the simulation. AOT (Aerosol Optical Thickness) from MODIS/Terra, pigment concentrations from Sea WiFS, and ozone amount from OMI measurements were used as inputs to the model. Other atmospheric input parameters such as surface wind and total column water vapor were taken from NCEP/NCAR reanalysis data. The 5-day averaged radiances over all targets show that the percent differences between simulated and observed radiances are within about ${\pm}5%$ in year 2005, indicating that the calculated radiances are in good agreement with satellite measurements. It has also been shown that the algorithm can produce the SeaWiFS radiances within about ${\pm}5%$ uncertainty range. It has been suggested that the algorithm can be used as a tool for calibrating the VIS bands within about 5% uncertainty range.

GOCI-IIVisible Radiometric Calibration Using Solar Radiance Observations and Sensor Stability Analysis (GOCI-II 태양광 보정시스템을 활용한 가시 채널 복사 보정 개선 및 센서 안정성 분석)

  • Minsang Kim;Myung-Sook Park;Jae-Hyun Ahn;Gm-Sil Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1541-1551
    • /
    • 2023
  • Radiometric calibration is a fundamental step in ocean color remote sensing since the step to derive solar radiance spectrum in visible to near-infrared wavelengths from the sensor-observed electromagnetic signals. Generally, satellite sensor suffers from degradation over the mission period, which results in biases/uncertainties in radiometric calibration and the final ocean products such as water-leaving radiance, chlorophyll-a concentration, and colored dissolved organic matter. Therefore, the importance of radiometric calibration for the continuity of ocean color satellites has been emphasized internationally. This study introduces an approach to improve the radiometric calibration algorithm for the visible bands of the Geostationary Ocean Color Imager-II (GOCI-II) satellite with a focus on stability. Solar Diffuser (SD) measurements were employed as an on-orbit radiometric calibration reference, to obtain the continuous monitoring of absolute gain values. Time series analysis of GOCI-II absolute gains revealed seasonal variations depending on the azimuth angle, as well as long-term trends by possible sensor degradation effects. To resolve the complexities in gain variability, an azimuth angle correction model was developed to eliminate seasonal periodicity, and a sensor degradation correction model was applied to estimate nonlinear trends in the absolute gain parameters. The results demonstrate the effects of the azimuth angle correction and sensor degradation correction model on the spectrum of Top of Atmosphere (TOA) radiance, confirming the capability for improving the long-term stability of GOCI-II data.