• Title/Summary/Keyword: 후향계단

Search Result 50, Processing Time 0.029 seconds

Influence of Unsteady Wake on Turbulent Separated Flows over a Backward-Facing Step (후향 계단 주위 난류 박리 유동에 대한 비정상 후류의 영향)

  • Chun, Se-Jong;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1708-1715
    • /
    • 2003
  • An experimental study was made of turbulent separated and reattaching flow over a backward-facing step, where unsteady wake was generated by a spoked-wheel type wake generator with cylindrical rods in front of the separated flow. The influence of unsteady wake was scrutinized in terms of the rotating speed of the wake generator (0$\leq$S $t_{H}$$\leq$0.4). A conditional averaging technique in corporation with SBF was employed to elucidate the influence of the unsteady wake on the large-scale vortical structures of the separated flow. Special attention was made during two-dimensional measurements of wall-pressure with or without unsteady wake. The wall-pressure fluctuations were used to predict dipole sound source by Curie's integral formula. It was found that the reduction of the dipole sound source was due to the reduction of turbulent kinetic energy by unsteady wake in the recirculation region.n.

Structural Change of Supersonic Jet Due to Liquid Injection in Supersonic Backward Facing Step Flow (초음속 후향 계단 유동에서 액체 분사로 인한 초음속 제트의 구조 변화)

  • Ahn, Sang-Hoon;Han, Doo-Hee;Choi, Han-Young;Seo, Seong-Hyeon;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.9-16
    • /
    • 2019
  • The experiment on the liquid jet in crossflow in supersonic BFS (backward-facing step) flow was conducted to investigate the mixing characteristics. The working fluids are nitrogen and water. The shadow graph technique was used to visualize the flow field. Images captured by the high-speed camera were applied to analyze the flow phenomena. The liquid jet was injected at the re-circulation zone created by the supersonic jet flow. Experimental conditions are defined based on the pressure of the nitrogen gas chamber and pressurized liquid tank. In respective cases, the penetration depth of liquid jet and location of the Mach disc were observed to be proportional to the momentum ratio of gas and liquid jets.

Effect of Two-Frequency Forcing on Flow Behind a Backward-Facing Step (이중주파수 가진이 후향계단 유동에 미치는 영향)

  • Yu, Jeong-Yeol;Jin, Song-Wan;Kim, Seong-Uk;Choe, Hae-Cheon;Kim, Sa-Ryang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.423-431
    • /
    • 2002
  • An experimental study is conducted to investigate the effect of two-frequency forcing on turbulent flow behind a backward-facing step at the Reynolds number of 27000 based on the step height. The forcing is provided from a thin slit located at the edge of the backward-facing step to increase mixing behind the backward-facing step and consequently to reduce the reattachment length. With single frequency forcing, the minimum reattachment length is obtained at the non-dimensional forcing frequency (F) of St$\_$h/ = 0.29. With two-frequency forcing, a subharmonic frequency (F/2) or biharmonic frequency (2F) is combined with the fundamental frequency (F), i.e. (F, F/2) or (F, 2F) forcing is applied. In the case of (F, F/2) forcing, the reattachment length is not much sensitive to the phase difference between F and F/2. However, the reattachment length significantly depends on the phase difference between F and 2F in the case of (F, 2F) forcing. At a certain range of the phase difference, the reattachment length becomes smaller than that of the single frequency forcing.

A Study on Mixed Convection Heat Transfer in Duct Flow behind a Backward-Facing Step by Using Schlieren Interferometer (쉴리렌 간섭계에 의한 사각덕트내 후향계단후 유동에서의 혼합대류 전열에 관한 연구)

  • Baek, B.J.;Pak, B.C.;Kim, J.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 1994
  • The flow and heat transfer characteristics behind a backward facing step located in a vertical channel has been studied. In this study, the numerical prediction has been performed by solving the Navier-Stokes equation and energy equation simultaneously with the SIMPLE algorithm embedied in TEACH code. Local heat flux was measured by using Schlieren Interferometer. The flow visualization was performed using the cylindrical lens and the laser beam that is scattered by the supplied glycerine particles. The velocity and temperature distributions, recirculation region, reattachment length, and local heat flux are obtained under the various parameters to investigate the buoyancy effect on the flow and heat transfer characteristics behind the step.

  • PDF

A study of backward-facing step flow in a rectangular duct (후향계단이 있는 사각덕트 내부의 유동특성 연구)

  • Kim, Sung-Joon;Choi, Byung-Dae
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.59-65
    • /
    • 1999
  • This study is to analyze turbulent flow over a backward-facing step in a rectangular duct. The side wall effects on the internal flow were determined by varying the aspect ratio(defined as the step span-to-height ratio) from 1 to 20. In the flow behind a backward-facing step, separation, recirculation and redeveloping is occurred frequently. These phenomena appear in a particular variation by varying the aspect ratio. The results show that the aspect ratio has an influence on the velocity and reattachment length. When the AR is increased, the reattachment length is increased. For 6 over aspect ration, the rate of increase is decreased. The length of recirculation in the upper corner is increased, as the increase of aspect ration. It's width is not changed in the variation of aspect ration. The transverse, streamwise and spanwise velocities were decreased along the flow down stream of the step.

  • PDF

DEPENDENCE OF WEIGHTING PARAMETER IN PRECONDITIONING METHOD FOR SOLVING LOW MACH NUMBER FLOW (낮은 Mach수유동 해석을 위한 Preconditioning 가중계수의 의존성)

  • An, Y.J.;Shin, B.R.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.55-61
    • /
    • 2010
  • A dependence of weighting parameter in preconditioning method for solving low Mach number flow with incompressible flow nature is investigated. The present preconditioning method employs a finite-difference method applied Roe‘s flux difference splitting approximation with the MUSCL-TVD scheme and 4th-order Runge-Kutta method in curvilinear coordinates. From the computational results of benchmark flows through a 2-D backward-facing step duct it is confirmed that there exists a suitable value of the weighting parameter for accurate and stable computation. A useful method to determine the weighting parameter is introduced. With this method, high accuracy and stable computational results were obtained for the flow with low Mach number in the range of Mach number less than 0.3.

An Analysis of Fluid Flow Using the Streamline Upwinding Finite Element Method (유선상류 유한요소법을 이용한 유동장의 해석)

  • 최형권;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.624-634
    • /
    • 1994
  • A numerical method which combines equal-order velocity-pressure formulation originated from SIMPLE algorithm and streamline upwinding method has been developed. To verify the proposed numerical method, we considered the lid-driven cavity flow and backward facing step flow. The trend of convergence history is stable up to the error criterion beyond which the maximum value of error is oscillatory due4 to the round-off error. In the present study, all results were obtained with the single precision calculation up to the given error criterion and it was found to be sufficient for our purpose. The present results were then compared with existing experimental results using laser doppler velocimetry and numerical results using finite difference method and mixed interpolation finite element method. It has been shown that the present method gives accurate results with less memories and execution time than the coventional finite element method.

Large Eddy Simulation of Turbulent Premixed Flame Behavior with Dynamic Subgrid G-Equation Model (Dynamic Subgrid G-방정식을 적용한 난류 예혼합 화염의 LES 해석)

  • Park, Nam-Seob;Kim, Man-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.57-64
    • /
    • 2005
  • Large Eddy Simulation (LES) of turbulent premixed combustion flow is performed by using the dynamic subgrid scale model based on -equation describing the flame front propagation. After introducing the LES governing equations with dynamic subgrid scale (DSGS) model newly introduced into the -equation, the turbulent premixed combustion flow over backward facing step is analyzed to validate present formulation. The calculated results can predict the velocity and temperature of the combustion flow in good agreement with the experiment data.

Numerical Study of slot injection behind a rearward-facing step into turbulent supersonic flow (초음속난류유동장에서 후향계단 후류의 측면제트분사에 대한 수치적 연구)

  • Kim J.R.;Kim J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.17-22
    • /
    • 2002
  • This paper describes numerical research on transverse jet behind rearward-facing step in turbulent supersonic flowfields without chemical reaction. The purpose of transverse jet behind rearward-facing step is to improve mixing of the fuel in the combustor. Two-dimensional unsteady flowfields generated by slot injection into supersonic flow are numerically simulated by integration of Navier-Stokes equation. Final-scale turbulence effects are modeled with two-equation $\kappa-\epsilon$ model. Numerical methods are modeled high-order upwind TVDschemes. A total of 4 cases are computed, comprising slot momentum flux ratios at four step heights downstream of the step. These numerical results are represented periodic phenomenon in unsteady flowfields.

  • PDF

Buoyancy-Affected Separated Laminar Flow over a Vertically Located, Two-Dimensional Backward-Facing Step (수직으로 놓인 후향계단위를 흐르는 유체유동에 미치는 부력의 영향에 관한 연구)

  • 백병준;박복춘;김진택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1253-1261
    • /
    • 1993
  • Numerical analysis and measurements of the velocity and temperature distributions in buoyancy assisting laminar mixed convection flow over a vertically located, two-dimensional backward-facing step are reported. Laser-Doppler Velocimeter and Constant Temperature Anemometer operated in constant current were used to measure simultaneously the velocity and temperature distributions in the recirculation region downstream of the step. The reattachment length was measured by using flow visualization technique for different inlet velocities, wall temperatures and step heights. While the reattachment length $X_r$ increases as the inlet velocity or step height increase, it decreases as the buoyancy force increases, causing the size of the recirculation region to decrease. For the experimental range of $Gr_s$/$Re_{s}^{2}$$\times$$10^3$<17, a correlation equation for the reattachment length can be given by $X_{r}=1.05(2.13+0.021 Re_{s})exp$ $(-33.7_s^{-0.186}/Gr_{s}/Re_{s}^2).$ The Nusselt number is found to increase and the location of its maximum value moves closer to the step as the buoyancy force increases. The location of the maximum Nusselt number occurs downstream of the reattachment point, and distance between the reattachment point and the location of the maximum Nusselt mumber increases as the buoyancy force increases. Computational prediction agrees favorably well with measured results.