• Title/Summary/Keyword: 후향계단

Search Result 50, Processing Time 0.023 seconds

Design of Supersonic Wind Tunnel for Analysis of Flow over a Backward Facing Step with Slot Injection (슬롯 분사가 있는 후향계단 유동장 분석을 위한 초음속풍동 설계)

  • Kim, Ick-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.363-367
    • /
    • 2016
  • A test section of a supersonic wind tunnel was designed for the analysis of flow characteristics over a backward-facing step with Mach 1.0 slot injection in a supersonic flow of Mach 2.5. The cavity flow of a high-speed vehicle is very complex at supersonic speed, so it is necessary to do experiments using supersonic wind tunnels to verify numerical analysis methods. The previous 2D symmetrical nozzle was replaced with an asymmetrical nozzle. The inviscid nozzle contour was designed using Method of Characteristics (MOC), and the boundary layer thickness correction was reflected by experimental data from the wind tunnel. The results were compared with a CFD analysis. The PID control system was changed to be based on the change of tank pressure. This improved the control efficiency, and the run times of supersonic flow increased by about 1 second. The flow characteristics over a backward facing step with slot injection were visualized by a Schlieren device. This equipment will be used for an experimental study of the film cooling effectiveness over a cavity with various velocities, mass flows, and temperatures.

Synthetic Turbulence Effect in Subsonic Backward Facing Step Flow Using LES (LES을 이용한 후향 계단 유동에서의 Synthetic turbulence 효과 연구)

  • Ahn, Sang-Hoon;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • The synthetic turbulence generation model for inlet boundary conditions of subsonic Backward Facing Step (BFS) was investigated. The average u-velocity and Reynolds stress at inlet boundary follows experimental data. Synthetic Eddy Method (SEM), random noise, and uniform flow conditions were implemented relative to the synthetic turbulence generation method. A three dimensional Large Eddy Simulation (LES) was applied for turbulent flow simulation. Turbulent and mean flow characteristics such as flow reattachment length, velocity profiles, and Reynolds stress profiles of BFS were compared with respect to the turbulent effects.

Large Eddy Simulation of Turbulent Flows over Backward-facing Steps (후향 계단에서 난류 유동에 대한 대와동모사)

  • Hwang, Cheol-Hong;Kum, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.507-514
    • /
    • 2009
  • Large eddy simulation code was developed to predict the turbulent flows over backward-facing steps including a recirculating flow phenomena. Localized dynamic ksgs-equation model was employed as a LES subgrid model and the LES solver was implemented on parallel computer consisting of 16 processors to reduce computational costs. The results of laminar flow showed qualitative and quantitative agreements between current simulations and experimental results availablein literatures. The simulation of the turbulent flows also yielded reasonable results. From these results, it can be expected that developed LES code will be very useful to analyze the combustion in stabilities and noise of a practical combustor in the future.

A Study on Flow Characteristics of Two-Dimensional Backward-Facing Step by CFD (CFD에 의한 2차원 후향계단에서의 재부착 유동특성에 관한 연구)

  • Choi Y. D.;Lee Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.127-132
    • /
    • 1998
  • The present study is aimed to investigate flow characteristics of Two dimensional backward-facing step by numerical approach. A convection conservative difference scheme based upon SOLA algorithm is used for the solution of the two-dimensional incompressible Navier-Stokes equations to simulate the laminar, transitional and turbulent flow conditions at which the experimental data can be available for the backward-facing step. The twenty kinds of Reynolds number are used for the calculations. In an effort to demonstrate that the reported solutions are dependent on the mesh refinement, computations are performed on seven different meshes of uniformly increasing refinement. Also to investigate the result of inflow dependence, two kinds of the inflow profile are chosen for the laminar flow. As criterion of benchmarking the result of numerical simulation, reattachment length is used for the selected Reynolds numbers.

  • PDF

An Experimental Study of Roughness Effects on the Turbulent Flow Downstream of a Backward-Facing Step (조도가 후향계단 주위의 난류유동에 미치는 영향에 대한 실험적 연구)

  • 김병남;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2083-2099
    • /
    • 1991
  • An experiment has been carried out to investigate the aerodynamic effect of surface roughness on the characteristics of the turbulent separation and reattaching flow downstream of a backward-facing step. The distributions of boundary layer parameters, forward-flow fraction and turbulent stresses in the region near the reattachment point are measured with a split film sensor. It is demonstrated that the streamwise distributions of the forward-flow fraction in the recirculation and reattachment regions are similar, independent of the roughness. The reattachment length is found to be only weakly affected by the roughness. It is also shown that the velocity profile on the rough surface approaches to that of the equilibrium turbulent boundary layer faster than that on the smooth surface in the redeveloping region after reattachment.

EFFECT OF LENGTH-SCALE IN DDES FOR BACKWARD-FACING STEP FLOW (후향계단 DDES 해석의 길이척도 영향 분석)

  • Lee, C.Y.;Sa, J.H.;Park, S.H.;Lee, E.S.;Lee, J.I.;Lee, K.S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.24-31
    • /
    • 2012
  • Effects of the subgrid length-scale in the Delayed-Detached Eddy Simulation(DDES) are investigated based on the Spalart-Allmaras(S-A) and the k-$\omega$ Shear Stress Transport(SST) turbulence models. Driver & Seegmiller's experimental results are used to validate numerical results. Grid convergence with grid resolution and subgrid length-scale is investigated. The simulation results show that the volume method for the subgrid length-scale is more resistant to unfavorable effects of the grid size in the periodic direction than the maximum method. Using a sufficient grid resolution and an appropriate subgrid length-scale, both S-A based DDES and SST based DDES methods can provide a good correlation with the experimental data.

Large-Scale Vertical Structure in Separated and Reattaching Turbulent flow over a Backward Facing Step (후향계단 난류 박리재부착 유동에서의 대형와의 구조)

  • Ahn, Seung-Kwang;Lee, In-Won;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1674-1680
    • /
    • 2002
  • An experimental study was made of a large-scale vortical structure over a backward-facing step. The Reynolds number based on the step height was R $e_{H}$ =33,000. To recognize the large-scale vortex, three components of velocity were measured. The measurements were performed in the recirculation zone (x/H=4.0) and the reattachment zone(x/H=7.5). To measure the wall pressure fluctuations in a turbulent flow over a backward-facing step, a 32-channel microphone array was installed beneath the wall in the streamwise and spanwise directions. From the measured pressure field, the size of large-scale vortex was obtained. As a detailed study, a conditionally-averaging technique was employed to characterize the coherent structure of the large-scale vortex. To see the relationship between the flow field and the relevant spatial mode of the pressure field, the spatial box filtering (SBF) was examined. A cross-correlation between velocity and pressure fluctuations was performed to identify the structure and the length scale of the large-scale vortex.x.

Effect of the separating streamline curvature on the axisymmetric backward-facing step flow (박리 유선의 곡률 변화가 축대칭 후향계단 흐름에 미치는 영향)

  • Kim, K.C.;Boo, J.S.;Yang, J.P.;Jung, J.Y.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1510-1520
    • /
    • 1996
  • An experimental study on the flow over the axisymmetric backward-facing step was carried out. The purpose of the present study is to investigate the effect of the separating streamline curvature on the reattachment length and to understand the structure of recirculating flows. Local mean and fluctuating velocity components were measured in the separating and reattaching axisymmetric region of turbulent boundary layer on the wall of convex cylinder placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. The study demonstrates that the reattachment length increases with increasing separating streamline curvature. It is also observed that the reverse flow velocity and turbulent kinetic energy increase with an increase in the separating streamline curvature. In addition, the behavior of maximum turbulent stresses show that the effect of separating streamline curvature is larger in the region of recirculating zone(X/H<2) than in the region of reattachment point.

Effects of Prandtl Numbers on Heat Transfer of Backward-Facing Step Laminar Flow with a Pulsating Inlet (입구유동 가진이 있는 층류 후향계단 유동에서 열전달에 대한 프란틀수 효과해석)

  • Kim, Won-Hyun;Park, Tae-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.923-930
    • /
    • 2012
  • The wall heat transfer of backward-facing step laminar flows with different Prandtl numbers and a pulsating inlet is investigated by unsteady simulations. The inlet is perturbed by the variation of frequency and amplitude. Temperature-dependent transport properties are adopted. Various characteristics of the wall heat transfer are explained by the variation of the thermal boundary layer. For Pr < 1, the wall heat transfer of temperature-dependent properties is decreased compared to that of constant properties, whereas it increases for Pr < 1. In addition, the wall heat transfer increases depending on the pulsating amplitude. However, the results of frequency variation for St < 0.2 show that the heat transfer is strongly enhanced at a specific frequency. In particular, the increase in the wall heat transfer is strongly related to the root mean square of the fluctuations of the reattachment length.

An Experiment on the Effects of Free Stream Turbulence Intensity on the Backward-Facing Step Flow (자유흐름 난류강도가 후향계단유동에 미치는 영향에 대한 실험)

  • 김사량;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2297-2307
    • /
    • 1995
  • An experimental study on the structure of a separated shear layer downstream of the backward-facing step has been performed by examining mean flow and turbulent quantities in terms of free stream turbulence. When free stream turbulence exists, the entrainment rate of the separated shear layer and the flow rate in the recirculation region are enhanced, resulting in shorter reattachment length. The production and diffusion terms in the turbulent kinetic energy balance are shown to increase more than the dissipation term does. Rapid decrease of the pressure-strain term in the shear stress balance implies the enhancement of the three-dimensional motion by free stream turbulence.