• Title/Summary/Keyword: 후방응력

Search Result 75, Processing Time 0.024 seconds

터보펌프 부분흡입형 터빈 공력설계

  • Lee, Eun-Seok;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.35-44
    • /
    • 2004
  • In this study, one dimensional aerodynamic and structural study of a partial admission turbo pump turbine was performed. A turbine consists of a nozzle, rotor, outlet guide vanes. The aerodynamic characteristics of each component was derived from the governing equation and validated from the CFD calculations. One-dimensional basic design such as velocity triangles was conducted from the mean line analysis and modified from the 2-D and 3-D CFD analysis. The blade profile was determined by the CFD optimization. The thermal stress analysis and structural analysis are needed to be studied in the next design stage.

  • PDF

A Study on Prevention of Central Burst Defects in Wire Drawing (인발공정의 내부결함 방지에 관한 연구)

  • 고대철;김병민;강범수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3098-3107
    • /
    • 1994
  • The central burst defects, so-called chevroning, in wire drawing are analyzed by the rigid-plastic finite element method. The occurrence of central burst defects in wire drawing is estimated by the distribution of the hydrostatic pressure around the central part of the workpiece. It has been possible to obtain numerical boundaries which, in reduction in area vs. semicone angle plane, divide the safe and the danger zones, depending on friction factors and material properties. Based on the results of the analysis, it is suggested that the previous criterion derived from the upper bound analysis should be modified for better prediction of the defects. The back tension and the billet with a spherical hole on the central axis are also included in the analysis of the defects.

The F/S Concept Design for Solid Motor Thrust Vector Control (고체모터 추력제어를 위한 F/S 개념 설계)

  • Kim, Byung-Hun;Kwon, Tae-Hoon;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.170-176
    • /
    • 2008
  • The concept design of Flexible Seal for thrust vector control of solid motor was performed. Through the concept design, the optimum pivot point of flexible seal, cross-section configuration of flexible seal and thermal protection system from combustion gas was decided. The pivot point of flexible seal has aft pivot type and cross-section view is conical type. For satisfying a spring torque rate, the shear modulus of rubber has the value of under about 0.6MPa and failure shear stress has over about 2.5MPa.

  • PDF

Three-dimensional finite element analysis on stress distribution of the mandibular implant-supported cantilever prostheses depending on the designs (임플란트 지지 하악 캔틸레버 보철물의 디자인에 따른 저작압 분산에 관한 삼차원 유한요소 분석)

  • Ban, Jae-Hyurk;Shin, Sang-Wan;Kim, Sun-Jong;Lee, Jeong-Yeol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.70-81
    • /
    • 2009
  • Statement of problem: The position and length of cantilever influence on the stress distribution of implants, superstructure and bone. In edentulous mandible, implant-supported cantilever prostheses that based 4 or 6 implants between mental foramens has been attempted. Excessive bite force loaded at cantilever prosthesis causes bone resorption and breakage of superstructure prosthesis around posterior implants. To complement the cantilever length of conventional prosthesis, In 1992, (McCartney) introduced "cantilever-rest-implant" and Malo reported "All-on-Four" in 2003. Purpose: Analyze and compare the stress distribution of conventional cantilever prostheses with rest implant and All-on-$Four^{TM}$ implant prostheses. Material and method: The external loads(300 N vertically, 75 N horizontally) are applied to first molar area. The stress value, stress distribution and aspect of stress dispersion are analyzed by three-dimensional finite element analysis program, ANSYS ver. 10.0. Results: 1. The rest implant and "All-on-Four" implant system are superior to conventional cantilever prostheses to reduce stress on the bone and the superstructure around implants. 2. The rest implant was of the greatest advantage to stress distribution on bone, implant and superstructure. 3. With same number of implants, distally tilted implants are preferred to conventional cantilever prostheses for reducing the length of cantilever.

Numerical Analysis on Stress Distribution of Vertebra and Stability of Intervertebral Fusion Cage with Change of Spike Shape (척추체간 유합케이지의 스파이크형상 변화에 따른 척추체의 응력분포 및 케이지의 안정성에 대한 수치적 해석)

  • 심해영;김철생;오재윤
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.361-367
    • /
    • 2004
  • The axial compressive strength, relative 3-D stability and osteoconductive shape design of an intervertebral fusion cage are important biomechanical factors for successful intervertebral fusion. Changes in the stress distribution of the vertebral end plate and in cage stability due to changes in the spike shape of a newly contrived box-shaped fusion cage are investigated. In this investigation, the initial contact of the cage's spikes with the end plate and the penetration of the cage's spikes into the end plate are considered. The finite element analysis is conducted to study the effects of the cage's spike height, tip width and angle on the stress distribution of the vertebral end plate, and the micromigration of the cage in the A-P direction. The stress distribution in the end plate is examined when a normal load of 1700N is applied to the vertebra after inserting 2 cages. The micromigration of the cage is examined when a pull out load of l00N is applied in the A-P direction. The analysis results reveal that the spike tip width significantly influences the stress concentration in the end plate, but the spike height and angle do not significantly influence the stress distribution in the end plate touching the cage's spikes. In addition, the analysis results show that the micromigration of the cage can be reduced by adjusting the spike angle and spike arrangement in the A-P direction. This study proposes the optimal shape of an intervertebral fusion cage, which promotes bone fusion, reduces the stress concentration in a vertebral end plate, and increases mechanical stability.

The Effects of Screw Retained Prosthesis Misfit & Cantilever on Stress Distribution in Bone Around the Implant (나사유지형 임플란트 고정성 보철물의 적합도와 캔틸레버가 지지골조직의 응력분산에 미치는 영향)

  • Lee, Jae-In;Kim, Tae-Young;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.224-235
    • /
    • 2013
  • A passively fitting prosthesis is an essential prerequisite to attain long-lasting success and maintenance of osseointegration. However, true "passive fit" can not be achieved with the present implant-supported prosthesis fabrication protocol. Many clinical situations are suitably treated with cantilevered implant-supported fixed restorations. The purpose of this study was to compare the stress distribution pattern and magnitude in supporting tissues around ITI implants with cantilevered, implant-supported, screw-retained fixed prosthesis according to the fitness of superstructures. Photoelastic model was made with PL-2 resin (Measurements, Raleigh, USA) and three ITI implants (${\phi}4.1{\times}10mm$) were placed in the mandibular posterior edentulous area distal to the canine. Anterior and posterior extended 4-unit cantilevered FPDs were made with different misfit in the superstructures. 4 types of prosthesis were made by placing a $100{\mu}m$ gap between the abutment and the crown on the second premolar and/or the first molar. Photoelastic stress analysis were carried out to measure the fringe order around the implant supporting structure under simulated loading conditions (30 lb).

A PHOTOELASTIC STUDY ON THE INITIAL STRESS DISTRIBUTION OF THE MOLAR ANCHORING SPRING(MAS) DURING RETRACTION OF THE MAXILLARY CANINE (상악견치 후방견인시 저항원 조절을 위한 MAS(Molar Anchoring Spring)의 초기 응력분포에 관한 광탄성학적 연구)

  • Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.26 no.4
    • /
    • pp.341-348
    • /
    • 1996
  • The efficiency of maxillary canine retraction by means of sliding mechanics along an 0.016 continuous labial arch and an 0.009 inch in diameter with a lumen of 0.030 inch NiTi closed coil spring was compared with that using the same NiTi closed coil spring and Molar Anchoring Spring(MAS) which was designed by author. MAS was made of .017" X .025" TMA wire and was given 60 degree tip-back bend on the wire close to the molar tube. This study was designed to investigate molar and canine root control during retraction into an extraction site with continuous arch wire system. Two techniques were tested with a continuous arch model embedded in a photoelastic resin. A photoelastic model was employed to visualize the effects of forces applied to canine and molar by two retraction mechanics. With the aid of polarized light, stresses were viewed as colored fringes. The photoelastic overview of the upper right quadrant showed that stress concentrations were observed in its photoelastic model. The obtained results were as follows. 1. Higher concentration of compression can be seen clearly at the distal curvature of the canine and mesial curvature of the molar and premolar when NiTi closed coil spring was applied only, which means severe anchorage loss of the molar and uncontrolled tipping of the canine. 2. The least level compression was presented at the mesial root area of the molar and premolar, and mesial root area of the canine when NiTi closed coil spring and MAS were used simultaneously. Especially mesial alveolar crest region of the canine was shown moderate level of compression that means MAS can be used as a appliance for anchorage control and prevention of canine extrusion and uncontrolled tipping during canine retraction.

  • PDF

Causes of Childhood Injuries Observed at the Emergency Rooms of Five Hospitals in Taegu (대구시내 종합병원 응급실에 찾아온 소아사고 환아의 사고원인)

  • Park, Jung-Han;Bae, Yeong-Sook
    • Journal of Preventive Medicine and Public Health
    • /
    • v.21 no.2 s.24
    • /
    • pp.224-237
    • /
    • 1988
  • To determine the causes of and related factors to childhood injuries, the emergency room records and inpatient medical records were reviewed for 4,849 injured children out of 15,790 pediatric patients(<15 years old) who visited the emergency rooms of 3 university hospitals and 2 general hospitals in Taegu from 1 January to 31 December 1987. Out of total injured children, 54.675 were 3-8 years old and the male to female ratio of the total injured children was about 2:1. The leading causes of injury were falls and slips (29.1%) and traffic accident(28.2%). The frequency of injury was higher in May-October than the rest of months and 51.6% of the injuries occurred between 15 and 20 o'clock. Falls and slips took place most frequently at the stairway(25.7%). The most common interpersonal violence was inflicted injuries(85.6%) and there were 11 child rapes. Dog bites accounted for 67.6% of all biting injuries and it occured 2.9 times more in male than in female. CO intoxication was the most common cause of poisoning (45.3%) and scalding accounted for 85.2% of all burns. Common places of drownings were river (32.2%), swimming pool (22.6%) and construction site(19.3%). To prevent childhood injuries, it is recommended to eliminate the hazardous environmental factors, to provide safe playgrounds, to educate the children for safety from kindergarten and the general public through mass communication, to establish a strict safety standard for houses, public buildings and facilities, and playgrounds.

  • PDF

A Literature Review on Implant Assisted Removable Partial Denture (임플란트를 이용한 국소의치에 관한 문헌고찰)

  • Lee, Ji-Hye;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.2
    • /
    • pp.179-190
    • /
    • 2012
  • The installation of an implant in the distal extension area to assist a partial dentrue (IARPD) was used carefully in clinical situations. The purpose of this review on the IARPD is describing the concept, clinical results and guidelines of IARPD. For the review, a literature search was performed using the PubMed. The data from the literature suggest that the placement of the implants could improve function and patient satisfaction. In addition, IARPD reduced the residual ridge resorption. Longer and wider implant should be placed. Less than $15^{\circ}$ angulation may be not harmful. To prevent the loosening of the abutment, modified abutment or resilient attachment should be used. However, the connection method between the clasp retention and IARPD should be considered for long time success. Moreover, longitudinal clinical studies are required for evaluation of IARPD.

Comparison of the Strain on the Alveolar Ridge According to the Occlusal Scheme of Complete Dentures (총의치 교합양식에 따른 응력 분포 양상 비교연구)

  • Choi, Won-Jun;Lim, Young-Jun;Kim, Chang-Whe;Kim, Myung-Joo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • The purpose of this study was to compare the strain on the alveolar ridge in the centric, eccentric and protrusive position according to the occlusal scheme (bilateral balanced occlusion with 33 degree anatomical teeth, group B; monoplane occlusion with non-anatomical teeth, group M; lingualized occlusion with 33 degree anatomical teeth and non-anatomical teeth, group L; of complete dentures. Experimental dentures were set bilateral balanced occlusion, lingualized occlusion and monoplane occlusion. They are analysed through T-Scan II(Tekscan, Boston, U.S.A) and 1.5mm thick layer was removed from the denture-supporting surface of resin model and then replaced with silicone to simulate resilient edentulous ridge mucosa. A $4{\times}6$ linear strain gauge is attached to the $1^{st}$ premolar and $1^{st}$ molar area. The strain values are recorded according to the occlusal scheme in the centric, eccentric and protrusive position after uniformly applying 50 N and 150 N force through a Universal Testing Machine(instron$^{(R)}$ 5567, Bluehill 2.0 software ,U.S.A.) with the models mounted in the articulator. When performing centric and protrusive occlusion, the three groups of occlusal scheme were compared in the anterior region and in the posterior region. The strains of each group were also compared in the working side and in the non-working side during eccentric excursion. It was observed that the strain in the bilateral balanced occlusion showed a higher value than the lingualized occlusion and monoplane occlusion in every position except the non-working side. However, during the eccentric movement the strain value in the non-working side showed the lowest value in the bilaterally balanced occlusion. The strain change amount from the working side or centric occlusion to non-working side and also the strain variation rate within the non-working side showed the highest value in bilateral balanced occlusion.