Comparison of the Strain on the Alveolar Ridge According to the Occlusal Scheme of Complete Dentures

총의치 교합양식에 따른 응력 분포 양상 비교연구

  • Choi, Won-Jun (Department of Prosthodontics, Graduate School, Seoul National University) ;
  • Lim, Young-Jun (Department of Prosthodontics, Graduate School, Seoul National University) ;
  • Kim, Chang-Whe (Department of Prosthodontics, Graduate School, Seoul National University) ;
  • Kim, Myung-Joo (Department of Prosthodontics, Graduate School, Seoul National University)
  • 최원준 (서울대학교 치의학전문대학원 치과보철학교실) ;
  • 임영준 (서울대학교 치의학전문대학원 치과보철학교실) ;
  • 김창회 (서울대학교 치의학전문대학원 치과보철학교실) ;
  • 김명주 (서울대학교 치의학전문대학원 치과보철학교실)
  • Received : 2009.11.10
  • Accepted : 2010.03.25
  • Published : 2010.03.30

Abstract

The purpose of this study was to compare the strain on the alveolar ridge in the centric, eccentric and protrusive position according to the occlusal scheme (bilateral balanced occlusion with 33 degree anatomical teeth, group B; monoplane occlusion with non-anatomical teeth, group M; lingualized occlusion with 33 degree anatomical teeth and non-anatomical teeth, group L; of complete dentures. Experimental dentures were set bilateral balanced occlusion, lingualized occlusion and monoplane occlusion. They are analysed through T-Scan II(Tekscan, Boston, U.S.A) and 1.5mm thick layer was removed from the denture-supporting surface of resin model and then replaced with silicone to simulate resilient edentulous ridge mucosa. A $4{\times}6$ linear strain gauge is attached to the $1^{st}$ premolar and $1^{st}$ molar area. The strain values are recorded according to the occlusal scheme in the centric, eccentric and protrusive position after uniformly applying 50 N and 150 N force through a Universal Testing Machine(instron$^{(R)}$ 5567, Bluehill 2.0 software ,U.S.A.) with the models mounted in the articulator. When performing centric and protrusive occlusion, the three groups of occlusal scheme were compared in the anterior region and in the posterior region. The strains of each group were also compared in the working side and in the non-working side during eccentric excursion. It was observed that the strain in the bilateral balanced occlusion showed a higher value than the lingualized occlusion and monoplane occlusion in every position except the non-working side. However, during the eccentric movement the strain value in the non-working side showed the lowest value in the bilaterally balanced occlusion. The strain change amount from the working side or centric occlusion to non-working side and also the strain variation rate within the non-working side showed the highest value in bilateral balanced occlusion.

총의치가 잔존치조제에 가하는 응력은 지지골의 흡수를 야기할 수 있으며, 이는 하악골에서 더 흔히 발생한다. 이러한 응력은 측방력과 관련이 있고, 이는 총의치의 교합력에 따라 차이를 보이게 된다. 그러므로 본 연구의 목적은 총의치의 교합양식(양측성 균형교합-33도 해부학적 치아, C군 ; 무교두교합-0도 비해부학적 치아, M군 ; 설측교두교합,-상악은 33도 해부학적 치아와 하악은 0도 비해부학적 치아, L군)에 따른 하악잔존치조제에 미치는 응력의 크기를 중심위, 측방위, 전방위 상태에서 비교하는 것이다. 기성 아크릴릭 무치악 모델을 이용하여 양측성 균형교합, 무교두교합, 설측교두교합 양식을 갖는 총의치를 제작하여 이를 T-ScanII(Tekscan, Boston, U.S.A)를 이용해 기록했다. 하악 무치악 아크릴 모형을 1.5 mm 일정하게 삭제한 뒤 실리콘으로 점막을 재현하여 제1소구치와 제1대구치 부위에 각각 $4{\times}6$의 linear strain gauge를 부착했다. 교합기에 모형을 부착한 상태에서 Universal Testing Machine(instron$^{(R)}$ 5567, Bluehill 2.0 software ,U.S.A.)으로 50 N과 150 N의 힘을 중심위, 측방위, 전방위 상태에서 일정하게 가하여 교합양식에 따른 응력값을 측정했다. 중심위와 전방위 상태에서는 전방과 후방의 응력값을 교합양식에 따라 비교하고, 측방위에서는 작업측과 비작업측에서의 응력값을 비교하였다. 이상과 같은 실험으로 양측성 균형교합에서의 응력값이 비작업측을 제외하고는 모든 위치에 서 설측교두교합과 무교두교합보다 더 컸으며, 비작업측과의 차이값과 비작업측에서의 응력 변화율도 가장 컸다. 그러나, 측방운동시 비작업측의 응력은 양측성 균형교합에서 가장 작은 것으로 나타났다.

Keywords

References

  1. Ortman HR. Complete denture occlusion. In: Winkler S(ed). Essentials of Complete Denture Prosthodontics, ed 2. Philadelphia: WB Saunders, 1994:217-90
  2. Renner RP. Practical complete denture occlusion. In: Renner RP(ed). Complete Dentures. A Guide for Patient Treatment. New York: Masson, 1981:120-51
  3. Heartwell CM Jr, Rahn AO. Tooth Arrangement. Syllabus of Complete Dentures, ed 4. Philadelphia: Lea & Febiger,1986:327-42
  4. Boucher CO. Arrangement of posterior teeth for functional harmony. In: Boucher CO, Hickey JC, Zarb GA(eds). Prosdontic Treatment for Edentulous Patient,ed7. St Louis: Mosby,1975: 413-46.
  5. Schultz AW. Comfort and chewing efficiency in dentures. J Procthet Dent 1951;1:38-48 https://doi.org/10.1016/0022-3913(51)90078-9
  6. Payne SH. A comparative study of posterior occlusion. J Prosthet Dent 1952;2:661-65 https://doi.org/10.1016/S0022-3913(52)80043-5
  7. Trapozzano VR, Lazzari JB. An experimental study of the testing of occlusal patterns on the same denture base. J Prosthet Dent 1952;2:440-57 https://doi.org/10.1016/0022-3913(52)90083-8
  8. Clough HE, et. al. A comparison of lingualized occlusion and monoplane occlusion in complete denture. J Prosthet Dent 1983;50:176-79 https://doi.org/10.1016/0022-3913(83)90007-0
  9. Michael CG, et. al. Biting strength and chewing forces in complete denture wearers. J Prosthet Dent 1990;63:549-53 https://doi.org/10.1016/0022-3913(90)90074-M
  10. Thompson MJ. Efficiency as related to cusp form in denture prosthesis. J Am Dent Assoc 1937;24:207-19
  11. Stephen LO, et. al. Photoelastic comparison of posterior denture occlusions. J Prosthet Dent 1978;40:18-22 https://doi.org/10.1016/0022-3913(78)90152-X
  12. Kelsey CC. Alveolar bone resorption under complete dentures. J Prosthet Dent 1971;25(3):152-161 https://doi.org/10.1016/0022-3913(71)90101-6
  13. Campbell RL A comparartive study of the resorption of the alveolar ridges in denture-wearers and nondenture wearers. J Am Dent Assoc 1960;60:143-53 https://doi.org/10.14219/jada.archive.1960.0031
  14. Jozefowicz W. The influence of wearing dentures on residual ridges-A comparative study. J Prosthet Dent 1970;24(2):137-44 https://doi.org/10.1016/0022-3913(70)90136-8
  15. Tallgren A. Alveolar bone loss in denture wearers as related to facial morphology. Acta Odontol Scand 1970;28(2):251-70 https://doi.org/10.3109/00016357009032033
  16. Atwood, DA. Clinical. cephalometric, and densitometric study of the reduction of residual ridges. J Prosthet Dent 1971;26(3):280-95 https://doi.org/10.1016/0022-3913(71)90070-9
  17. Tallgren A. The continuing reduction of the residual alveolar ridges in complete denture wearers : A mixed longitudinal study covering 25 years. J Prosthet Dent 1972;27(2):120-32 https://doi.org/10.1016/0022-3913(72)90188-6
  18. Neufeld, JO. Changes in the trabecular pattern of the mandible following the loss of teeth. J Prosthet Dent 1958;8:685 https://doi.org/10.1016/0022-3913(58)90056-8
  19. Ortman H. The role of occlusion in preservation and prevention in complete prosthodontics. J Prosthet Den 1971;25(3):121-38 https://doi.org/10.1016/0022-3913(71)90099-0
  20. Wright C. Evaluation of the factors necessary to develop stsbility in mandibular dentures. J Prosthet Dent 1966;16(3):414-30 https://doi.org/10.1016/0022-3913(66)90045-X
  21. Sears V. Thirty years of non-anatomic teeth. J Prosthet Dent 1953;3:596 https://doi.org/10.1016/0022-3913(53)90056-0
  22. Nogueira SS. Russi S. Compagnoni MA, De. J Prosthet Dent 2004;91:386-8 https://doi.org/10.1016/j.prosdent.2004.02.002
  23. Mizui M, Nabershima F, Tosa J, Tanaka M, Kawazoe T. Quantitative analysis of occlusal balance in intercuspal position using the T-Scan System. Int J Prosthodont 1994;7:62-71
  24. Kapur KK, Yurkstas AA. An evaluation of centric relation records obtained by various techniques. J Prosthet Dent 1957;7:770-86 https://doi.org/10.1016/0022-3913(57)90095-1
  25. Francesco OL. et. al. New method for analyzing complete denture occlusion using the center of force concept: A case report J Prosthet Dent 1998;80:519-23 https://doi.org/10.1016/S0022-3913(98)70025-3
  26. Jacobson TE, Krol AJ. A contemporary review of the factors involved in complete dentures. Part II : stability. J Prosthet Dent 1983;49:165-72. https://doi.org/10.1016/0022-3913(83)90494-8
  27. Boening KW, Walter MH. Computer-aided evaluation of occlusal load in complete dentures. J Prosthet Dent 1992;67:339-44. https://doi.org/10.1016/0022-3913(92)90243-4
  28. H. Uchida, et. al. Measurement in vivo of masticatory mucosal thickness with 20 MHz B-mode ultrasonic diagnostic equipment, J Dent Rec 1989;68:95-100. https://doi.org/10.1177/00220345890680021501
  29. Kydd W. Complete denture base deformation with varied occlusal tooth forms. J Prosthet Dent 1956;6:714 https://doi.org/10.1016/0022-3913(56)90018-X
  30. Swoope CC Jr, Kydd. WL. The effect of cusp form and occlusal area in denture base deformation. J Prosthet Dent 1966;16:34-43 https://doi.org/10.1016/0022-3913(66)90110-7
  31. Sharry JJ, et. al. Influence of artificial tooth forms on bone deformation beneath complete dentures. J Dent Res 1960; 39: 253-66 https://doi.org/10.1177/00220345600390020701
  32. Stromberg WR. A Method of Measuring Forces of Denture Bases Against Supporting Tissues, J Prosthet Dent 1955;5:268-88 https://doi.org/10.1016/0022-3913(55)90123-2
  33. Johnson W. A study of stress distribution in complete upper dentures. Dent Pract Dent Rec 1965;15:371
  34. Maeda Y, Wood WW. Finite element method stimulation of bone resorption beneath a complete denture. J Dent Res 1989;68:1370-3 https://doi.org/10.1177/00220345890680091601
  35. Inoue S, et. al. An in vitro study of influence of occlusal scheme on pressure distribution of complete denture supporting tissues. Int J Prosthodont 1996;9:179-87
  36. Ohguri T, et. al. Influence of occlusal scheme on the pressure distribution under a complete denture. Int J Prosthodont. 1999;12:353-8.
  37. Pound E. Utilizing speech to simplify a personalized denture service. J Prosthet Dent 1970;24:586-600 https://doi.org/10.1016/0022-3913(70)90094-6