• Title/Summary/Keyword: 후류변형

Search Result 13, Processing Time 0.021 seconds

Static Aeroelastic Analysis of Hingeless Rotor System in Hover Using Free-Wake Method (자유후류기법을 이용한 무힌지 로터 시스템의 정지비행시 정적 공탄성 해석)

  • Yoo, Seung-Jae;Lim, In-Gyu;Lee, In;Kim, Do-Hyung;Kim, Doeg-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.156-162
    • /
    • 2008
  • The static aeroelastic analysis of composite hingeless rotor blades in hover was performed using free-wake method. Large deflection beam theory was applied to analyze blade motions as a one-dimension beam. Anisotropic beam theory was applied to perform a cross-sectional analysis for composite rotor blades. Aerodynamic loads were calculated through a three-dimensional aerodynamic model which is based on the unsteady vortex lattice method. The wake geometry in hover was described using a time-marching free-wake method. Numerical results of the steady-state deflections for the composite hingeless rotor blades were presented and compared with those results based on two-dimensional quasi-steady strip theory and prescribed wake method. It was shown that wakes affect the steady-state deflections.

Flow and Structural Response Characteristics of a Box-type Artificial Reef (상자형 어초의 흐름 및 구조응답 특성)

  • Kim, Dongha;Woo, Jinho;Na, Won-Bae;Yoon, Han-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.113-119
    • /
    • 2014
  • We carried out flow and structural response analysis of a box-type artificial reef (AR), which is made of concrete and structural steel. From the flow analysis, the wake region and drag coefficient were evaluated and accordingly, the structural analysis was performed to evaluate the stress and deformation of the target reef by considering the pressure field obtained from the flow analysis. The concept of wake volume was presented to quantitatively estimate the wake region and its variation according to flow direction and velocity. From the results, it is shown that the flow responses are only sensitive to the flow direction; the structural responses are sensitive to both of the flow velocity and direction although the magnitudes are negligible; and the wake volume became 3.52 times the AR volume with an optimum installation condition ($30^{\circ}$, flow direction) of the target unit.

A Study on the Performance of the Wing In Ground Effect by a Vortex Lattice Method (와류 격자법에 의한 지면효과익의 성능 연구)

  • Jeong, Gwang-Hyo;Jang, Jong-Hui;Jeon, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.87-96
    • /
    • 1998
  • A numerical simulation was done to investigate the performance of thin wings in close vicinity to ground. The simulation is based on Vortex Lattice Method(VLM) and freely deforming wake elements are taken into account for a sudden acceleration case. The parameters covered in the simulation are angle of attack, aspect ratio, ground clearance, sweep angle and taper ratio. In addition, the effect of the wing endplate on the ground effect is included. The wing sections used for present computations are uncambered, cambered and S-types. The present computational results are compared with other published computational results and experimental data.

  • PDF

On the Study of Nonlinear Wave Diffraction by the Breakwaters (방파제 주위에서의 비선형 회절 현상에 대한 고색)

  • 조일형;김장환
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.350-356
    • /
    • 1993
  • We carry out a numerical calculation to understand the nonlinear wave deformation around breakwaters using the Boussinesq equation, which is weakly nonlinear and weakly dispersive shallow water equation. A numerical method based on a finite element scheme and fourth order Runge-Kutta algorithm is employed to investigate the diffraction of incident waves by the breakwater. As a computational model, two-dimensional wave flume is treated. The breakwaters is perpendicular to the side wall of a channel. From the numerical results, the wave deformations according to the change of the length and the thickness of breakwaters are investigated. We also investigate the effect of the nonlinearity by comparing the results with the linear solutions.

  • PDF

Investigation on Prediction Methods for a Rotor Averaged Inflow in Forward Flight (전진비행하는 회전익기 로터의 평균 유입류 예측기법 연구)

  • Hwang, Chang-Jeon;Chung, Ki-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.124-129
    • /
    • 2007
  • Prediction methods for a rotor averaged inflow in forward flight are investigated in this study. The investigated methods are Drees linear inflow model, Mangler & Squire model and free vortex wake(FVW) method. Predictions have been performed for a four-blade rotor operating at three different advance ratios i.e. 0.15, 0.23 and 0.30, at which experimental data are available. According to results, Drees model has a limitation for the inflow non-uniformity prediction due to an inherent linear characteristics. Mangler & Squire model has a reasonable accuracy except the disk edge region. KARI FVW method has very good accuracy and has better accuracy than the other FVW method especially in inboard region. However, there are some discrepancies in retreating side due to the dynamic stall effect and in near hub region due to the fuselage upwash effect.

PIV를 이용한 트랜섬 선미 형상에 따른 후류 점성유동 특성에 관한 연구

  • Gu, Yun-Gyeong;Lee, Chang-U;Son, Chang-Bae;Kim, Ok-Seok;Lee, Gyeong-U
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.46-47
    • /
    • 2010
  • 추진기와 타가 놓여있는 선미부에서의 난류 유동에 의한 저항을 증가시키는 요인이 집중되어 있다. 트랜섬 선미를 가지고 있는 선박의 경우 선미선형에 의한 저항의 형태가 달라진다. $Re=2.8{\times}10^5$의 균일흐름에서, 선저와 트랜섬이 이루는 각도를 각각 $45^{\circ}$, $90^{\circ}$, $135^{\circ}$로 변형하여 선미선형을 선정하였으며, 자유 수면에서 모델의 하부까지의 깊이는 동일하게 적용하였다. 선저가 끝단에서 트랜섬 선미형상에 의해 급격한 각도를 이루는 지점에서 상하로 맥동하는 유동특성이 나타나며, 각도가 증가 할수록 와의 형태가 작아져 난류의 발생이 감소하였다.

  • PDF

Influence of Manufacturing Tolerance on the Aerodynamic Characteristics of Axial Compressor Blades - 1. Distortion of Blade Profile Curvatures (축류 압축기 날개의 제작 공차가 공력 특성에 미치는 영향- 1. 날개 형상 곡률 변형)

  • Sohn, Jeong L.;Kang, Dong Jin;Jun, Hyun Joo;Kang, Shin-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.30-36
    • /
    • 1999
  • Blade shape profile in the axial compressor is one of the most important factors governing its aerodynamic characteristics. Manufacturing tolerance, which is inevitable in the blade manufacturing processes, may change blade profile and as a consequence, it will affect the compressor performance. In this paper, influence of manufacturing tolerance on the aerodynamic characteristics of axial compressor blades with distortion of blade profile curvatures is investigated by using a flow simulation technique. It is found that manufacturing tolerance can be an important factor affecting the source of both profile and wake losses of the axial compressor blades.

  • PDF

Flow Resistance of Model Cage Net (모형 우리 그물의 유수저항)

  • KIM Tae-Ho;KIM Dae-An;RYU Cheong-Ro;KIM Jae-O;JEONG Eui-Cheol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.6
    • /
    • pp.514-519
    • /
    • 2000
  • In order to develop the method for the calculation of flow resistance acting on cage net, the relation between the velocity reduction factor and $S_n/S$, the ratio of total area of netting projected to the perpendicular to the water flow $S_n$ to wall area of netting S, was derived based on the numerical and experimental analysis of the wake flow through a netting twine simplified by a cylinder and a netting panel. The velocity was reduced in accordance with the velocity reduction factor when the flow passed the netting panel upstream of a cage net. The proposed method for the calculation of fluid force acting on a square cage net was based upon the assumption that it could be divided into four side panels and one bottom panel. It was proved that the force could be calculated by the sum of the drag forces acting on the individual netting panels.

  • PDF

Numerical Study on the Characteristics of Thermal Plasmas Disturbed by Inserting a Langmuir Probe (랑뮤어 탐침에 의해 변형된 열플라즈마 특성에 관한 해석적 연구)

  • Lee, J.C.;Kim, Y.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.189-194
    • /
    • 2008
  • Measurements with a Langmuir probe, which are the most often used procedures of plasma diagnostics, can disturb plasma flows and change its characteristics quite a little because the probe should be inserted into thermal flowing plasmas. In this study, we calculated the characteristics of thermal plasmas with and without the probe into an atmospheric argon free-burning arc numerically, and investigated aerodynamic and thermal disturbances with temperature and axial velocity distributions. For the modelling of thermal plasmas, we have made two governing equations, which are on the thermal-flow and electromagnetic fields, coupled together with a commercial CFD package and user-coded subroutines. It was found that thermal disturbances happened to both sides of the probe, before and behind, seriously. Due to the aerodynamic disturbance, we could find that there were the stagnation point in front of the probe and the wake behind it. Therefore, aerodynamic and thermal disturbances caused by the probe insertion should be considered to increase the reliability of the probe diagnostics.

A Study of the Prediction of the Temperature Reduction of Tire Sidewalls According to the Shape of the Cooling Fins (냉각핀 형상에 따른 타이어 사이드월의 표면온도 저감 효과 예측에 관한 연구)

  • Park, Jae Hyen;Jung, Sung Pil;Chung, Won Sun;Chun, Chul Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.245-253
    • /
    • 2016
  • The friction and deformation of a tire causes heat generation, which causes a temperature rise of the tire. This temperature rise can be a source of tire damage. The object of this study is to investigate the cooling effect of the application of a fin to the tire side to suppress the temperature rise. Eight different fin shapes were considered, and the sidewall surface temperature reduction owing to the cooling fin shape was numerically analyzed. In addition, the flow characteristics and heat transfer characteristics of the vortex of the pin rear were compared.