• Title/Summary/Keyword: 횡 모드

Search Result 127, Processing Time 0.02 seconds

Vibration Analyses of HDD Spindle Systems Supported by Hydrodynamic Bearings Taking into Account Stator's Flexibility (고정자의 유연성을 고려한 유체베어링 지지 HDD 스핀들 계의 진동해석)

  • Lim, Seungchul;Chun, Sang-Bok;Han, Yun-Sik;Lee, Ho-Seong;Kim, Cheol-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.749-756
    • /
    • 2005
  • This paper presents vibration analyses of hard disk drive (HDD) spindle systems based on the finite element method. The systems under investigation have a cantilevered shaft rotating on hydrodynamic bearings. In particular, the influence of stator's flexibility on major modes has been taken into account in dual ways lumped and distributed-parameter model approfches. Even the latter employs relatively macroscopic elements instead of extremely fine ones Popular in commercial codes. In order to prove the effectiveness of such formulated models, two types of HDD prototypes featuring different hub and stator structures are selected as examples. Compared to the first, the second type has a reinforced stator that would raise the natural frequency of the hub's translational (or sideway) mode. Both free and forced vibration characteristics are computed, and subsequently compared with the experimental data. It is our conclusion that Particularly the Proposed distributed model method is an efficient design tool for state-of-the-art HDD spindle systems.

Effects of Torque Fluctuation on the Stability of the Transverse Vibration of a Spinning Disk (영구자석 스핀들 모터의 코깅토크가 회전디스크 굽힘 진동의 안정성에 미치는 영향)

  • 이기녕;신응수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.942-947
    • /
    • 2001
  • This paper provides a stability analysis of the transverse vibration of a spinning disk under the torque fluctuation from a permanent magnetic motor. An analytical model has been formulated for a flexible annular disk with its spinning velocity varying harmonically with the same frequency as the cogging torque. A perturbation method based on multiple time scales is applied to perform the stability analysis. Based on expressions for the amplitude and frequency of the parametric excitation, stability boundaries are determined in terms of a nominal spindle velocity, the least common multiple of poles and slots, the magnitude of torque fluctuation and the modal characteristics of. the disk. The stability diagrams predicted by perturbation have been verified numerically using the Floquet theory, which is in good agreement. In conclusion, the fluctuation in spinning velocity is found to affect the stability of the transverse vibration of a rotating disks. The results of this work can be applied to high precision spindle systems such as computer storage systems.

  • PDF

Mode Behavior of Circular Vertical-Cavity Surface-Emitting Laser (원형 수직 캐비티 표면 광방출 레이저의 모드특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.51-56
    • /
    • 2012
  • The resonance properties of circular vertical-cavity surface-emitting lasers (VCSELs) are studied by using a newly developed equivalent network approach. Optical parameters, such as the stop-band or the reflectivity of periodic Bragg mirrors and the resonance wavelength, are explored for the design of these structures. To evaluate the differential quantum efficiency and the threshold current density, a transverse resonance condition of circular modal transmission-line theory is also utilized. This approach dramatically reduces the computational time as well as gives an explicit insight to explore the optical characteristics of circular VCSELs.

Improvement of Enhanced Assumed Strain Four-node Finite Element Based on Reissner-Mindlin Plate Theory (개선된 추가변형률 4절점 평판휨 요소)

  • Chun, Kyoung Sik;Park, Dae Yong;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.295-303
    • /
    • 2004
  • In this paper, an improved four-node Reissner-Mindlin plate-bending element with enhanced assumed strain field is presented for the analysis of isotropic and laminated composite plates. To avoid the shear locking and spurious zero energy modes, the transverse shear behavior is improved by the addition of a new enhanced shear strain based on the incompatible displacement mode approach and bubble function. The "standard" enhanced strain fields (Andelfinger and Ramm, 1993) are also employed to improve the in-plane behaviors of the plate elements. The four-node quadrilateral element derived using the first-order shear deformation theory is designated as "14EASP". Several applications are investigated to assess the features and the performances of the proposed element. The results are compared with other finite element solutions and analytical solutions. Numerical examples show that the element is stable, invariant, passes the patch test, and yields good results especially in highly distorted regimes.

Development of Helmholtz Solver for Thermo-Acoustic Instability within Combustion Devices (연소시스템의 열음향 불안정 예측을 위한 Helmholtz Solver 개발)

  • Kim, Seong-Ku;Choi, Hwan-Seok;Cha, Dong-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.445-455
    • /
    • 2010
  • In order to effectively predict thermo-acoustic instability within real combustors of rocket engines and gas turbines, in the present study, the Helmholtz equation in conjunction with the time lag hypothesis is discretized by the finite element method on three-dimensional hybrid unstructured mesh. Numerical nonlinearity caused by the combustion response term is linearized by an iterative method, and the large-scale eigenvalue problem is solved by the Arnoldi method available in the ARPACK. As a consequence, the final solution of complex valued eigenfrequency and acoustic pressure field can be interpreted as resonant frequency, growth rate, and modal shape for acoustic modes of interest. The predictive capabilities of the present method have been validated against two academic problems with complex impedance boundary and premixed flame, as well as an ambient acoustic test for liquid rocket combustion chamber with/without baffle.

Behavior of the Crack Initiation, Transition and Fatigue Crack Growth of Rail Steel (레일강의 균열발생·천이 및 피로균열진전거동)

  • Lee, Jong Sun;Kang, Ki Weon;Choi, Rin;Kim, Jung Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.33-42
    • /
    • 1999
  • In the present study, crack initiation criteria, static failure and tensile mode fatigue behavior for a rail steel are evaluated to assure the railway vehicle's safety. The transverse fissure, which is the most critical damage in the rail, is initiated by the maximum shear stress and its location is subsurface. In addition, the possibility of transition from the shear mode to the mixed mode increases with increasing the length of subsurface crack. Because of the brittleness by the welding, the fracture toughness of the welded part is lower than of the base metal. For low ${\Delta}K$, the stage II fatigue crack growth rates of the welded part is slower than of the base metal but, for high ${\Delta}K$, this different behavior for fatigue crack growth rate is nearly diminished. These trends are more remarkable for low stress ratio, R=0.1. It is believed that this behavior is caused by the change of the microstructure which that of the welded part is coarser than of base metal.

  • PDF

Aeroelastic Behaviors of Self-anchored Suspension Bridge with Lateral Sag of Main Cable(II) - Focused on the Behavior of Tower - (횡방향 새그를 가진 자정식 현수교의 공탄성 거동(II) - 주탑의 거동을 중심으로 -)

  • Kwon, Soon Duck;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.269-275
    • /
    • 1997
  • Wind tunnel test results and their interpretations, which were performed to study the aerodynamic stability of tower of self-anchored suspension bridge, are presented in this paper. Tower and full models were tested under smooth and turbulent flow conditions. In the case of the tower with inclined two columns, the vibration due to wakes were occurred at wide velocity zone because the wakes with various frequencies were generated by inclined upstream column. It has to be emphasized that the vibration characteristics of the tower in the self-anchored suspension bridge may be very sensitive to the longitudinal boundary conditions of the girder at the supports. Because of the two natural frequency of the tower, out-of-plane bending and torsional, were not well separated, coupled motions were observed in a wide range of wind velocity. The effectiveness of corner cut, countermeasure to reduce the tower vibrations, was also studied. It has been found that 1:10, comer cut size to column width, may be the most effective ratio for reducing the vibrations.

  • PDF

Locomotion Control of Biped Robots with Serially-Linked Parallel Legs (이중 병렬형 다리 구조를 가진 2족보행로봇의 보행제어)

  • Yoon, Jung-Han;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.683-693
    • /
    • 2010
  • In this paper, we propose a new parallel mechanism for the legs of biped robots and the control of the robot's locomotion. A leg consists of two 3-DOF parallel platforms linked serially: one is an orientation platform for a thigh and the other is the 3-DOF asymmetric parallel platform for the shank. The desired locomotion trajectory is generated on the basis of the Gravity-Compensated Inverted Pendulum Mode (GCIPM) in the sagittal direction and the Linear Inverted Pendulum Mode (LIPM) in the lateral direction, respectively. In order to simulate the ground reaction force, a 6-DOF elastic pad model is used underneath each of the soles. The performance and effectiveness of the proposed parallel mechanism and locomotion control are shown by the results of computer simulations of a 12-DOF parallel biped robot using $SimMechanics^{(R)}$.

A Study on the director distribution of In-Plane Switching liquid crystal cell by finite element method (유한요소법을 이용한 IPS 모드의 액정 분자 거동 해석 연구)

  • Jeong, Ju-Sik;Yun, Sang-Ho;Lee, Cheol-Su;Won, Tae-Yeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.10-18
    • /
    • 2002
  • This paper reports a methodology for calculating distribution of the director in an In-plane switching liquid crystal cell by a numerical technique. To calculate distribution of the director, we developed a three dimensional finite element method (FEM) and calculated the distribution of electric potential and electric field in the liquid crystal cell. We have considered the free-energy density composed of electric potential and strain energy in the bulk of liquid crystal cell and calculated the switching property of liquid crystal cell by the Ericksen-Leslie equation and the Laplace equation We generated 1,859 nodes and 8,640 elements for IPS mode cell with 24${\mu}{\textrm}{m}$$\times$12${\mu}{\textrm}{m}$$\times$4.5${\mu}{\textrm}{m}$ and performed transient analysis until 16ms. As a result, horizontal electric field occurred at cell region except liquid crystal region above electrodes and the disclination occured on electrodes.

A Numerical Simulation of Hydrodynamic Interactions Between Two Moored Barges with Regular Waves (규칙파 중 계류된 두 바지선의 유체역학적 상호작용에 관한 수치시뮬레이션)

  • Lee, Sang-Do;Bae, Byung-Deug;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.615-624
    • /
    • 2016
  • In this study, two rectangular barges in close proximity were simulated to analyze the characteristics of motion responses due to hydrodynamic interactions. Using a numerical solution from DNV-GL SESAM, coupled stiffness matrix terms for these same FEM models were added to the multiple body modes in the surge direction. Potential theory was used to calculate the first order radiation and diffraction effects on the simulated barge models. In the results, the sheltering effect of the barges was not shown at 1.3 rad/s with hull separation of 20 m in transverse waves. The separation effect between the barges was more clear with longitudinal waves and a shallow water depth. However, sway forces were influenced by hull separation with transverse waves. The peaks for sway and heave motion and sway force occurred at higher frequencies as hull separation narrowed with longitudinal and transverse waves. Given a depth of 10 m, the sway motion on the lee side of a coupled barge made a significant difference in the range of 0.2-0.8 rad/s with transverse and oblique waves. Also, the peaks for sway force were situated at lower frequencies, even when incident waves changed.