• Title/Summary/Keyword: 횡충돌

Search Result 52, Processing Time 0.02 seconds

A Study on Fluid Flow and Heat Transfer of a Corrugated Structure for Crossflow Reduction of Impingement Jet (충돌제트에서의 횡방향 유동 감소를 위한 파형 구조의 유동 및 열전달에 관한 연구)

  • Hwang, Byeong Jo;Kim, Seon Ho;Joo, Won Gu;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.329-339
    • /
    • 2017
  • Impingement jets have been applied in a wide variety of fields as they provide significantly high heat transfer on the impingement-jet stagnation zone. However, the crossflow in an impingement chamber developed by spent wall jets can disrupt and deflect the downstream jets in the array, leading to a decrease in the cooling performance of an array of impingement jets. A numerical analysis is made of the fluid flow and heat transfer characteristics in a corrugated structure that traps the spent air in the corrugations between impingement jets and reduces crossflow effects on downstream jets. All computations are performed by considering a three-dimensional, steady, and incompressible flow by using the ANSYS-CFX 15.0 code. The effects of the configuration parameters of the corrugated structure on crossflow reduction of the array of impingement jets are presented and discussed.

Integrated Risk Management System for Intelligent Vehicle (지능형 자동차의 통합 위험 관리 시스템)

  • Yi, Kyongsu;Choi, Jaewoong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1503-1510
    • /
    • 2012
  • This paper presents an Integrated Risk Management System (IRMS), which is designed to integrate longitudinal and lateral collision avoidance systems. Indices representing longitudinal and lateral collision risks are designed. From the designed indices, an integrated control strategy is designed. A collision avoidance algorithm is designed to assist the driver in avoiding collisions by using a vehicle-driver-controller integrated linear model. The performance of the proposed algorithm is investigated via computer simulations conducted using the vehicle dynamics software CARSIM and Matlab/Simulink.

Scale Effects on the Structural Behavior of Steel Unstiffened Plates Subjected to Lateral Collisions (횡충돌 하중을 받는 비보강 강판의 구조거동에 대한 크기 효과)

  • Cho, Sang-Rai;Park, Jeong-Yul;Song, Seung-Uk;Park, Sang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.178-186
    • /
    • 2018
  • The scale effects on the permanent deformations and fractures of structures subjected to impact loadings have been aware by structural engineers for a long time. Experimental investigations have been performed with various structures to demonstrate the effects, but very few are directly related with marine structural elements. Furthermore, the causes of the scale effects have not clearly been answered yet. In this study, to quantify the scale effects on the permanent deflections, lateral collision tests were performed on steel unstiffened plates and the numerical analyses of the tested models were also conducted using a commercial package, Abaqus. After the substantiation of the numerical tool using the test results, a parametric study was carried out considering and neglecting the strain-rate hardening. Based upon the parametric study results, it may be concluded that the main cause of the scale effects on the permanent deflections of steel unstiffened plates subjected to lateral collision loads is the strain-rate effects.

Ship Collision Risk Analysis of Bridge Piers (선박충돌로 인한 교각의 위험도 분석)

  • Lee, Seong-Lo;Bae, Yong-Gwi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.169-176
    • /
    • 2005
  • An analysis of the annual frequency of collapse(AF) is performed for each bridge pier exposed to ship collision. From this analysis, the impact lateral resistance can be determined for each pier. The bridge pier impact resistance is selected using a probability-based analysis procedure in which the predicted annual frequency of bridge collapse, AF, from the ship collision risk assessment is compared to an acceptance criterion. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed AF is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The distribution of the AF acceptance criterion among the exposed piers is generally based on the designer's judgment. In this study, the acceptance criterion is allocated to each pier using allocation weights based on the previous predictions.

Study on the Prediction of Lateral and Yawing Behaviors of a Leading Vehicle in a Train Collision (철도차량 충돌 시 선두차량의 횡 및 요잉 거동 예측 연구)

  • Kim, Jun Woo;Jeong, Eui Cheol;Koo, Jeong Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.95-101
    • /
    • 2017
  • In this study, we derived theoretical equations for the zigzag movement of a leading vehicle, which is the most frequent behavior in train accidents, by using a simplified spring-mass model for the rolling stock. In order to solve the equations of motion, we applied the Runge-Kutta method, which is the typical numerical analysis method used for differential equations. Furthermore, the lateral displacement of the wheel-set at the wheel-rail interface was estimated using kinetic energy. In order to verify the derived equations, we compared the theoretical and simulated results under various collision conditions. The maximum relative deviations of the lateral displacements were 0.8 [%] ~ 4.7 [%] in light collisions and 0.6 [%] ~ 5.1 [%] under derailment conditions. When an accident is simulated, these theoretical equations can be used to predict the overall behavior and obtain the offset of the body-to-body link as the initial perturbation.

Oblique Angle Effect of Impinging Jet on Heat Flow Characteristics of a Corrugated Structure (충돌제트의 경사각도가 파형 구조의 열유동 특성에 미치는 영향)

  • Hwang, Byeong Jo;Kim, Seon Ho;Joo, Won Gu;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.83-93
    • /
    • 2017
  • A numerical analysis is made of the fluid flow and heat transfer characteristics in the corrugated structure that traps the spent air in the corrugations between impinging jets to reduce crossflow effects on downstream jets in the array. All computations are performed by considering three-dimensional, steady state, and incompressible flow by using the ANSYS-CFX 15.0 code. Averaged jet Reynolds number is 10,000. The oblique angles of impingement jets on the spanwise section are $70^{\circ}$, $80^{\circ}$, $90^{\circ}$, and the oblique angles of impingement jets on the streamwise section are $70^{\circ}$, $90^{\circ}$, $110^{\circ}$. The investigation focuses on the oblique angle influence of impinging jet array on the fluid flow and heat transfer characteristics of a corrugated structure.

UAM Parallel Corridor Collision Risk Analysis based on Collision Risk Model (충돌 위험 모델을 활용한 UAM 평행 항로 충돌 위험 분석)

  • Youn-sil Kim;Joong-won Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.561-567
    • /
    • 2023
  • In this study, the collision risk of the UAM (Urban Air Mobility) corridor was analyzed using a collision risk model applied to the manned aircraft corridor. According to the K-UAM roadmap and operating concept, UAM is expected to fly on a designated route similar to existing manned aircraft operations and operate on two routes, traveling back and forth between the departure point and the destination point. Among domestic manned aircraft routes, the manned aircraft operation between Gimpo Airport and Jeju Airport is similar to this and takes the form of a parallel route with a lateral separation distance between the two routes. In this study, we analyzed the collision risk of the UAM corridor according to the lateral separation distance using a collision risk model used to analyze the collision risk of manned aircraft parallel routes for a similar type of UAM corridor. Based on this, we finally analyzed how many parallel routes could be installed within the width of the Han River, considering the K-UAM demonstration route.

A Study on Interaction between Two Vessels Passing Close to Each Other on Parallel Courses and Calculation of Collision Time by its effect (근접 항해하는 선박의 상호작용과 충돌시간 계산에 관한 연구)

  • Lee Chun-Ki;Yoon Jeom-Dong;Kang Il-Kwon
    • Journal of Navigation and Port Research
    • /
    • v.30 no.5 s.111
    • /
    • pp.315-320
    • /
    • 2006
  • It is well known that the ship manoeuvring motion is greatly affected by hydrodynamic forces and moments acting between two vessels passing too close to each other in confined waters, such as in a harbour or narrow channel. This interaction between two vessels could be assumed to be the functions of the longitudinal distance, transverse distance and their speeds. The aim of this study is to calculate the interaction between two vessels passing close to each other on parallel courses by simulation, and to estimate the effect of rudder action and time at collision through simulation under the condition of various longitudinal distances and different speed-ratios of the two vessels.

A Study on Interaction between Two Vessels Passing Close to Each Other on Parallel Courses and Calculation of Collision Time by its effect (근접 항해하는 선박의 상호작용과 충돌시간 계산에 관한 연구)

  • Lee Chun-Ki;Yoon Jeom-Dong;Kang Il-Kwon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.55-60
    • /
    • 2006
  • It is well known tint the ship manoeuvring motion is greatly affected by hydrodynamic forces and moments acting between two vessels passing too close to each other in confined waters, such as in a harbour or narrow channel. This interaction between two vessels could be assumed to be the functions of the longitudinal distance, transverse distance and their speeds. The aim of this study is to calculate the interaction between two vessels passing close to each other on parallel courses by simulation, and to estimate the effect of rudder action and time of collision through simulation under the condition of various longitudinal distances and different speed-ratios of the two vessels.

  • PDF

Spray Characteristics of Impinging Injectors in Crossflows (횡방향 유동에서 충돌형 분사기의 액체제트 분무 특성)

  • Song, Yoonho;Lee, Woongu;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.949-952
    • /
    • 2017
  • Spray characteristics of the impinging injectors in subsonic crossflows were experimentally studied and compared with the plain-orifice injectors. By changing the impingement angle (60, 90, 120) which is the same orifice length to diameter ratio (L/d = 5), spray characteristics were investigated. In the view of the top view from the impinging injectors, as the impingement angle increases, the liquid column breakup length in the y-direction was decreased. On the other hand, when the impinging injector is viewed from the side view, the breakup length in the x direction is smaller than the previous plain-orifice injectors, which mean that the atomizing performance of the impingement-type injector is better than that of the single-hole orifice.

  • PDF