• Title/Summary/Keyword: 횡방향 철근

Search Result 193, Processing Time 0.024 seconds

Early Age Behavior of Thin Bonded Continuously Reinforced Concrete Overlay on Aged Jointed Plain Concrete Pavement (노후 줄눈 콘크리트 포장 보수를 위한 얇은 연속 철근 콘크리트 덧씌우기 포장의 초기거동 평가)

  • Ryu, Sung-Woo;Nam, Jung-Hee;Kim, Ki-Heun;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.121-132
    • /
    • 2009
  • Thin bonded continuously reinforced concrete overlay(CRCO) was constructed on He existing jointed plain concrete pavement(HCP) surface at Seo-Hae-Ahn express highway in South Korea in order to evaluate its applicability and performance. Two sections of road were considered for this evaluation. In the first section, the concrete overlayer was placed and cut down to the existing layer to form transverse joints while CRCO was constructed on top of the existing layer in the second section. Early strength concrete(Type III) was utilized for both overlay sections. The depth of milling and the thickness of overlaid layer were 5 cm and 10 cm, respectively. Several vibrating wire gauges(VWG) were installed to evaluate the performance of CRCO with respect to curling, delamination, and crack propagation. As a result of the strength test, it was found that strength of the material reaches the design criteria within 1-3 days. Analysis with vibrating wire gauge(VWG) showed CRCO effectively restricts joint movement. High adhesive strength also was observed from the material regardless of length of aging. Meanwhile, transverse cracks were observed on the middle of the section where JPCP overlay was applied whereas arbitrarily cracks in transverse direction were observed on the section where CRCP was applied.

  • PDF

Hysteretic Behavior of Diagonally Reinforced Concrete Coupling Beams According to Aspect Ratio and Volume Fraction of Steel Fiber Under Cyclic Loading (반복하중을 받는 대각보강된 철근콘크리트 연결보의 강섬유 형상비와 혼입률에 따른 이력거동)

  • Choi, Ji-Yoon;Son, Dong-Hee;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.84-91
    • /
    • 2022
  • In this study, an experimental study was conducted to analyze the hysteresis behavior according to the steel fiber aspect ratio and volume fraction of diagonally reinforced concrete coupling beams under to cyclic loading. The aspect ratio and volume fraction of the steel fibers were set as the main variables, and 4 specimens were fabricated in which the amount of transverse reinforcement of the coupling beam suggested in the domestic building structural standard was relaxed by about 53%. In the experiment, cyclic loading experiments were performed in the displacement control method in accordance with ACI 374.2R-13, and as a result of the experiment, it was found that all specimens containing steel fibers exceeded the nominal shear strength suggested by the current structural standards. As the aspect ratio of the steel fibers increased, the steel fibers prevented the buckling of the diagonal reinforcement, and the bridging effect of the steel fibers held the crack surface of the concrete. The shear strength, stiffness reduction and energy dissipation capacity of the specimens containing steel fibers were superior to those of the Vf0 specimens without steel fibers. Therefore, it is judged that the steel fiber reinforced concrete can relieve the details of the transverse reinforced.

Seismic Performance and Retrofit of Reinforced Concrete Two-Column Piers Subjected to Bi-directional Cyclic Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진성능과 보강)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Ho-Yul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.47-55
    • /
    • 2006
  • Seismic performance and retrofit of reinforced concrete (RC) two-column piers widely used at roadway bridges in Korea was experimentally evaluated. Ten two-column piers that were 400 mm in diameter and 2,000 mm in height were constructed. These piers were subjected to hi-directional cyclic loadings under a constant axial load of $0.1f_{ck}A_g$. Test parameters were the confinement steel ratio, loading pattern, lap splice of longitudinal reinforcing bars, and retrofitting method. Specimens with lap-spliced longitudinal bars were retrofitted with steel jacket, pre-stressing steel wire, and steel band. Test result showed that while the specimens subjected to bi-directional lateral cyclic loadings which consisted of two main amplitudes in the transverse axis and two sub amplitudes in longitudinal axis, referred to as a T-series cyclic loadings, exhibited plastic hinges both at the top and bottom parts of the column, the specimens subjected to bi-directional lateral cyclic loadings in an opposite way, referred to as a L-series cyclic loadings, exhibited a plastic hinge only at the bottom of the column. The displacement ductility of the specimen under the T-series loadings was bigger than that of the specimen under the L-series loadings. Specimen retrofitted with pre-stressing steel wires exhibited poor ductility due to the upward shift of the plastic hinge region because of over-reinforcement, but specimens retrofitted with steel jacket and steel band showed the required displacement ductility. Steel band can be an effective retrofitting scheme to improve the seimsic performance of RC bridge piers, considering its practical construction.

Static Behavior of Steel-Concrete Composite Beam with Perfobond Rib Shear Connector (Perfobond rib 전단연결재가 설치된 강.콘크리트 합성보의 정적거동)

  • Ahn, Jin Hee;Chung, Hamin;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.421-432
    • /
    • 2009
  • In this study, push-out and static loading tests were conducted to evaluate the behavioral characteristics of composite beams with a perfobond rib shear connector. The shear capacity of the perfobond rib was found to be proportional to its concrete strength, which is in turn affected by the increase in the concrete end-bearing strength and concrete dowel action to resist the shear force. The relative slips of the push-out specimen, however, which was used to assess the ductility of the shear connector, increased to some extent, but it no longer increased when it reached the critical concrete strength because of the flexibility of the transverse rebar in the rib hole. The static-loading-test results revealed a crack on the concrete slab in the composite beam with a perfobond rib on the side of the rib hole and transverse rebar for the applied moment and shear force to the rib hole, depending on the static loading. The shear resistance characteristics of the perfobond rib shear connector were found to resist the shear force from the relative slip on the interface of the composite beam. Thus, the sectional effect of the shear connector to the composite beam with a perfobond rib should be considered when designing the composite beam because the behavior of the composite beam can change owing to the shear connector.

Nonlinear Finite Element Analysis of Circular Hollow Reinforced Concrete Columns Based on Design Variables (설계변수에 따른 중공원형 철근콘크리트 교각의 비선형 유한요소해석)

  • Cheon, Ju-Hyun;Lee, Seung-Jin;Lee, Byung-Ju;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.35-42
    • /
    • 2011
  • The seismic design of solid reinforced concrete bridge columns has been committed to, based on accumulated research and design specifications. The rational confinement model and seismic performance evaluation, however, are insufficient because of the lack of domestic and foreign design specifications about the experimental and analytical difficulties in the case of circular hollow reinforced concrete columns. In this paper, the seismic behavior of circular hollow reinforced concrete columns and its dependence on design variables are understood and explained. These research results can be used to derive the rational and economical design specifications for circular hollow sectional columns based on the result from the nonlinear analysis program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology).

Evaluation of Effective Section Area of Shear Steel in Reinforced Concrete Circular Columns (철근콘크리트 원형기둥의 전단철근 유효단면적 평가)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.81-88
    • /
    • 1999
  • In order to properly evaluate the shear strength of reinforced concrete circular columns due to the transverse shear reinforcement, the average of fractions of forces generated along the circular transverse hoops across the shear failure plane in the loading direction is calculated. For this, the center-to-center diameter of circular transverse hoops. spacing and the crack angle measured to the column longitudinal axis are considered. Using these variables, an equation representing the effective section area of circular transverse shear steel is proposed. The study result shows that the constant parameter. used for the calculation of the effective section area of circular hoops over the last 10 years, should not universally be applied any more. The use of the constant parameter may not seriously do harm to the evaluation of shear strength for circular columns with non-seismically designed transverse hoop reinforcement, since it gives slightly conservative results. However. for well-confined circular columns with close spacing or circular steel jacketing. it gives about 20% overestimation of the shear capacity contributed by the transverse hoop steel.

Seismic Performance of a Non-Seismic Designed Pier Wall and Retrofit Concept (비내진 벽식 교각의 내진성능 및 보강개념)

  • Hoon, Lee-Jae;Ho, Choi-Young;Soon, Park-Kwang;Seok, Ju-Hyeong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.87-98
    • /
    • 2009
  • It is well known that reinforcement details in the plastic hinge region of bridge piers give the most important effects on the seismic performance of bridges, from investigations of bridge failures in many earthquake events and in laboratory tests. Longitudinal reinforcement details give larger effects than lateral reinforcement details do. The lap-spliced longitudinal steel shows slip during earthquake events, which results in low ductility and inadequate seismic performance. However, before the issue of the earthquake design code, a considerable number of bridge piers were constructed with lap-spliced longitudinal steel in the plastic hinge region. Therefore, a large amount of research has been conducted on the seismic performance and retrofit of circular and rectangular shaped bridge columns with lap-spliced longitudinal steel. However, research on wall type piers is very limited. This paper investigates the seismic performance of a pier wall by a quasi-static test in the weak axis direction and proposes a retrofit method. From the test with variables being the longitudinal steel detail and the transverse steel amount, it is shown that the currently used definition of yield displacement is not adequate. Therefore a new definition of yield displacement for the ductility investigation for a pier wall is proposed. In addition, a retrofit method by steel plates and bolts is proposed to improve ductility, and test results show that slip of the longitudinal steel is prevented by up to a considerably large displacement.

Three Dimensional Construction Stage Analysis and Deformation Monitoring of a Reinforced Concrete Highrise Building (철근콘크리트조 초고층건물의 3차원 시공단계 해석 및 시공중 변형 계측)

  • Jeong, Daegye;Yu, Eunjong;Ha, Taehun;Lee, Sungho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.573-580
    • /
    • 2014
  • In this paper, axial strains and lateral displacements of columns in a 58-story reinforced concrete building were measured using vibrating wire gauge and laser scanner, respectively, and compared with predicted values. Predictions were obtained using ASAP, which is a 3D construction stage analysis program developed based on PCA report. Comparisons indicated that columns in the middle of floor plan showed good correlation with predictions. However, the columns in the corners showed some deviations. Lateral displacement of columns between measurement and estimation showed similar trends but considerable deviations, which are seemingly caused by construction error of column faces, and inaccuracy in differential vertical displacement prediction.

Evaluation of Damage Indices for RC Bridge Piers with Premature Termination of Main Reinforcement Using Inelastic FE Analysis (비탄성 유한요소해석을 이용한 주철근 단락을 갖는 철근콘크리트 교각의 손상지수 평가)

  • 김태훈;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.39-49
    • /
    • 2001
  • In this paper, inelastic analysis procedures are presented for the seismic performance evaluation of RC bridge piers with premature termination of main reinforcement. The mechanical characteristic of cracked concrete and reinforcing bar in concrete has been modeled, considering the bond effect between reinforcing bars and concrete, the effect of aggregate interlocking at crack surface and the stiffness degradation after the crack. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The increase of concrete strength due to the lateral confining reinforcement has been also taken into account to model the confined concrete. The proposed numerical method for seismic performance evaluation of RC bridge piers with premature termination of main reinforcement will be verified by comparison with reliable experimental results.

  • PDF

Enhancing the Performance of High-Strength Concrete Corbels Using Steel Fibers and Headed Bars (강섬유 및 헤디드 바를 활용한 고강도 콘크리트 내민받침의 성능 향상)

  • Yang, Jun-Mo;Lee, Joo-Ha;Shin, Hyun-Oh;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.697-703
    • /
    • 2009
  • High-strength concrete corbels with varying percentage of steel fibers and two different anchorage types (welding to transverse bar, headed) for the main tension tie were constructed and tested. The results showed that performance in terms of load carrying capacities, stiffness, ductility, and crack width was improved, as the percentage of steel fibers was increased. In addition, the corbel specimens in which headed bars were used as the main tension tie reinforcements showed superior load carrying capacities, stiffness, and ductility compared to the corbel specimens in which the main tension ties were anchored by welding to the transverse bars. From the test results, it is expected that load carrying capacities, durability, and constructibility of high strength concrete corbels would be improved by using steel fibers and headed bars. Experimental results presented in this paper were also compared with various prediction models proposed by researchers and presented in codes. The truss model proposed by Fattuhi provides fairly good predictions for fiber reinforced high-strength concrete corbels.