• Title/Summary/Keyword: 회전 원주

Search Result 79, Processing Time 0.036 seconds

A Study on the Wake Flow behind a Circular Cylinder with a Spinning Control Cylinder (회전하는 제어원주가 설치된 원주후류의 유동장에 관한 연구)

  • 부정숙;류병남;심정훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.58-69
    • /
    • 2000
  • An experimental study was conducted to investigate the influence of the spinning control cylinders which was set on the surface of a fixed circular cylinder in uniform flow, $Re=1.24\times10^4$. The measurements of velocity vectors and pressure distributions are carried out in various spin parameters and angles of spinning control cylinder. The results show that velocity profiles and pressure distributions are different with angles of control cylinder and spin parameters. When the control cylinder angle is $100^{\circ}$, there is more effect in increasing the velocity and the pressure distribution than other cases. In this case, the vortex shedding frequency was increased as increasing spin parameter.

  • PDF

Control Effects on the Aerodynamic Forces and Wake Structures by a Spinning Cylinder in Staggered Arrangement (엇갈림 배열에서 회전원주에 의한 정지원주의 공력 및 후류유동 제어)

  • 부정숙;류병남;심정훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.857-868
    • /
    • 2001
  • The aerodynamic forces and wake structures of the non-rotating downstream cylinder which is located behind the spinning upstream cylinder in tandem and staggered arrangement have been investigated by experimental method at Re= $1.32{\times}10^4$. The measurements of wake flow and pressure distributions of downstream cylinder are carried out in various spin parameters by combination of both longitudinal spacing rations L/d=1.5, 3.0, 4.5 and transverse spacing ratios T/d =0.0, -0.5, 0.5. For the present experiment, it has been found that the spin parameter of spinning upstream cylinder affect more easily the downstream cylinder in tandem arrangement than that in staggered arrangement.

  • PDF

A Study on the change of shape of the flume cross section for the control of bottom shear stress distribution of an annular flume (환형수조의 바닥전단응력 균일화를 위한 수조단면의 형상변화에 대한 연구)

  • Yang, Su-Hyun;Im, Ik-Tae;Hwang, Kyu-Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.177-177
    • /
    • 2011
  • 환형수조는 점착성 퇴적물의 침/퇴적실험을 위한 실험장치로서, 수조내부의 수면과 접하여 회전하는 상부링(top ring)의 마찰력에 의해 흐름이 생성되며, 시간의 제약없이 흐름조건을 동일하게 만들 수 있다는 큰 장점을 갖는다. 그러나 환형수조는 원주유속의 속도차이 및 원심력으로 인한 2차 순환류가 형성되어 바닥전단응력이 불균일해지는 단점을 가지고 있으며, 이러한 이유로 인하여 환형수조를 이용한 침/퇴적실험 수행시 수조의 외벽부근에서 더 큰 침식이 발생한다. 따라서, 2차 순환류의 발생을 줄이고 바닥전단응력의 분포를 균등하게 하기 위해 양방향 회전(환형수조의 몸체를 상부링의 회전방향과 반대방향으로 회전)이 가능한 환형수조가 고안되었는데, 이러한 방법으로 2차 순환류의 크기를 저감시키고, 바닥전단응력을 균일하게 만들 수 있다. 한편, 환형수조의 양방향 회전(counter-rotation)은 현장용 환형수조에는 적용될 수 없는 단점을 갖는다. 현장실험에서는 바닥면이 없는 현장용 환형수조를 해저면에 거치시켜 자연상태의 비교란 퇴적물 시료를 저면으로 형성시키는데, 바닥면이 존재하지 않는 환형수조 본체는 회전시킬 수 없으므로 양방향 회전을 통한 2차 순환류의 저감 및 바닥전단응력 균일화의 효과를 기대할 수 없다. 이러한 이유로 환형수조의 양방향 회전은 단지 실내실험용 환형수조에만 적용된다. 이에 본 연구에서는 환형수조 본체를 회전시키지 않고 수조의 측벽과 상부링의 각도 조절을 통해 수조단면의 형상을 변화시켜 2차 순환류를 저감시키고 바닥전단응력을 균등하게 하는 방법에 대한 연구가 수행되었다. 이 방법은 본체의 회전이 필요 없으므로 현장용 환형수조에 적용될 수 있을 뿐만 아니라, 실험장치의 구조가 단순해져 실험장치의 제작비가 절감될 수 있다. 또한 원주속도에 수직한 단면에서 속도구배가 감소되어 2차 순환류가 저감됨과 동시에 바닥전단응력이 균등하게 됨으로서 양방향 회전시와 동일한 효과가 얻어질 수 있을 것으로 예상된다.

  • PDF

Comparison vibration characteristics of several wireless endodontic handpieces (여러 근관치료용 무선 핸드피스의 진동양상 비교)

  • Lee, Bo-Kyung;Lee, Yoon;Park, Se-Hee;Cho, Kyung-Mo;Kim, Jin-Woo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.2
    • /
    • pp.81-89
    • /
    • 2022
  • Purpose: Wireless endodontic handpieces (WEH) are widely used in dental clinics due to their convenience and portability. This study aimed to compare the vibration magnitudes and patterns generated by five WEH. Materials and Methods: Vibration acceleration of five WEH (X-Smart IQ, E connect S, Endo A Class, ENDOIT, and TRAUS ENDO) in the rotary and reciprocating motion was measured with accelerometer The average vibration acceleration was analyzed using the t-test, Welch's ANOVA test, and Dunnett T3 test at P < 0.05. Results: In all WEH, the average vibration acceleration in reciprocating motion was significantly higher than that in rotary motion (P < 0.001). In rotary motion, repeated vibration graphs of constant amplitude were obtained without sudden changes in the magnitude of vibration, and the average vibration acceleration value was high in the order of X Smart IQ, Endo A Class, ENDOIT, E Connect S, and TRAUS ENDO (P < 0.001), there was no statistically significant difference between X Smart IQ and Endo A Class. In reciprocating motion, a vibration graph was obtained in which large amplitude peaks appear at specific points within one cycle are repeated. The average vibration acceleration value was highest in the order of X Smart IQ, E Connect S, Endo A class, ENDOIT, and TRAUS ENDO (P < 0.001). Conclusion: Regardless of the type of WEH, greater vibration occurred in the reciprocating motion than in the rotary motion (P < 0.001). In the reciprocating motion, there was a difference in vibration for all handpieces (P < 0.001).

The Flow Field Characteristics of a Rotating Circular Cylinder near a Plane Wall (벽면에 근접해서 회전하는 원주의 유동장 특성)

  • Kang, Myung-Hun;Kim, Kwang-Seok;Ro, Ki-Deok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.166-172
    • /
    • 2007
  • The flow around a rotating circular cylinder near a plane wall is investigated by the measurement of the lift acting on the cylinder and by the flow visualization using the hydrogen bubble technique in the circulating water tank. The experimental parameters are the rotating direction of the cylinder. the space ratios $H/D(H/D=0.05{\sim}0.5)$ between cylinder and plane wall and the velocity ratios ${\alpha}({\alpha}=0{\sim}{\pm}2.0)$. In the case of clockwise, the lift on the rotating circular cylinder was increased with the reduction of the space ratios and with the velocity ratios, the upper separation point was more shifted in the rotating direction with them. In the case of anticlockwise, the absolute value of the lift on the rotating circular cylinder was increased with increasing the space ratios and the velocity ratios. the lower separation point was more shifted in the rotating direction with them.

Flow and Fluid Force around a Rotating Circular Cylinder with Square Grooves (정방형 홈을 가진 회전원주 주위의 유동과 유체력)

  • Kang, Myeong-Hoon;Ro, Ki-Deok;Kong, Tae-Hue
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1460-1465
    • /
    • 2004
  • Flow patterns around a rotating circular cylinder having square dimpled surface were visualized by the hydrogen bubble technique at velocity ratios from a=0 to 4.8 and Reynolds number of $Re=1.0{\times}10^{4}$. The wake region of the cylinder was reduced as the velocity ratios increase and was smaller than that of the smooth cylinder without dimples at the same velocity ratio. The hydrodynamic characteristics on the cylinder was investigated by measuring of lift and drag at velocity ratios from a=0 to 4.1 and Reynolds number from $Re=1.2{\times}10^{4}$ to $Re=2.0{\times}10^{4}$. As the velocity ratios increase, the average lift and drag coefficients were increased and at the same velocity ratio, the average lift was larger but the average drag was smaller than that of the smooth cylinder.

  • PDF

Flowfield Characteristics of a Rotating Circular Cylinder Having Square Dimpled Surface (정방형 딤플을 가진 회전원주의 유동장 특성)

  • Ro, Ki-Deok;Kang, Myeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.486-492
    • /
    • 2004
  • Flow patterns around a rotating circular cylinder having square dimpled surface were visualized by the hydrogen bubble technique at velocity ratios from a=0 to 4.8 and Reynolds number of Re=1.0${\times}$10$^4$. The wake region of the cylinder was reduced as the velocity ratios increase and was smaller than that of the smooth cylinder without dimples at the same velocity ratio. The hydrodynamic characteristics on the cylinder was investigated by measuring of lift and drag at velocity ratios from a=0 to 4.1 and Reynolds number from Re=1.2${\times}$10$^4$ to Re=2.0${\times}$10$^4$. As the velocity ratios increase, the average lift and drag coefficients were increased and at the same velocity ratio, the average lift was larger but the average drag was smaller than that of the smooth cylinder.

Transverse flux circumferential induction method as a driving principle of the contact-free revolving stage (비접촉 회전 스테이지에의 구동 원리로서의 횡자속 원주형 유도 방법)

  • Kim, Hyo-Jun;Jung, Kwang-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.72-79
    • /
    • 2005
  • Compared with linear induction principle, the transverse flux circumferential induction principle is suggested as a driving mechanism of the revolving stage, which can rotate contactlessly without any supporting structure. The stage realizes the integrated motion of levitation, rotation, and planar perturbation, using the two-axis forces, normally directed force of the air-gap and tangential force, of the induction drivers mounted on the stator uniformly. In this paper, the force generating mechanism of the stage is described in detail. First, the various core shapes generating the transverse flux are analyzed to guarantee the proper thrust force. And the vector force intensity of the circumferential induction driver constituting the stage is compared with that of the linear induction driver. Especially it is shown that the magnetic force of the suggested system can be modeled with the linear equivalent model, including the test verification.

The Magnus Effect of a Rotating Circular Cylinder near a Plane Wall (벽면근처에서 회전하는 원주의 마그너스 효과)

  • Ro, Ki-Deok;Kim, Kwang-Seok
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.42-47
    • /
    • 2006
  • The flow around a rotating circular cylinder near a plane wall is investigated by the measurement of the lift acting on the cylinder and by the flow visualization using the hydrogen bubble technique in the circulating water tank. The experimental parameters are the rotating direction of the cylinder, the space ratios H/D$(H/D=0.05\sim0.5)$ between cylinder and plane wall and the velocity ratios $\alpha(\alpha=0\sim{\pm}2.0)$. In the case of clockwise, the lift on the rotating circular cylinder was increased with the reduction of the space ratios and with the velocity ratios, the upper separation point was more shifted in the rotating direction with them. In the case of anticlockwise, the absolute value of the lift on the rotating circular cylinder was increased with the space ratios and with the velocity ratios, the lower separation point was more shifted in the rotating direction with them.

  • PDF