• Title/Summary/Keyword: 회전 우주

Search Result 441, Processing Time 0.022 seconds

Real-time Linux based Rotor UAV Control Software Development (실시간 리눅스 기반의 회전익 무인항공기 제어 소프트웨어 개발)

  • Park, Kiseok;Park, Joong Hee;Wie, Young Jun;Park, Jungkeun;Moon, Chang Joo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1613-1616
    • /
    • 2010
  • 본 논문은 실시간 운영체제인 Xenomai 를 사용하여, 회전익 무인항공기 소프트웨어 개발에 대한 내용을 설명하고 있다. 실시간 운영체제 사용하여 고정 순위 우선 스케줄링을 채택함으로써 데드라인의 타이밍(Timming) 결정성을 보장하였고, 이기종 시스템과의 호환성과 확장성을 고려하여 POSIX API 를 사용하여 멀티 쓰레드를 구현하였다. 또한 실시간 드라이버 모델(RTDM : Real-Time Driver Model)을 사용하여 획득한 데이터를 실시간 전송이 가능하도록 하였다. 본 논문은 실시간 운영체제를 무인항공기에 적용하고 구현된 비행제어 컴퓨터와 제어 소프트웨어를 비율 단조 스케줄링을 적용하여 무인항공기의 쓰레드들의 응답 속도 및 안정성을 보장하는 방안을 제시하였다.

A Prediction Study on the Roll Lock-in Phenomena of Freely Spinning Tailfins (자유회전 테일핀의 Roll Lock-in 현상 예측 연구)

  • Yang, Young-Rok;Cho, Tae-Hwan;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.849-855
    • /
    • 2010
  • This paper investigated the roll lock-in phenomena of a canard-controlled missile with freely spinning tailfins by applying Falanga's roll-rate equation. To confirm and validate the accuracy of the results of the roll-rate and roll lock-in prediction for freely spinning tailfins, the results were compared with Blair's wind tunnel test data. For calculation of the roll-rate of freely spinning tailfins, rolling moment coefficients of the tailfins were obtained from the wind tunnel test data and roll-damping coefficients were calculated by missile DATCOM. The roll-rate and roll lock-in of the freely spinning tailfins were calculated by applying these values to the roll-rate equation for freely spinning tailfins. The calculation results showed good agreement with the wind tunnel test data, and the roll lock-in could be anticipated as well.

Performance Analysis of Autorotation(2) : Performance of High Speed Autorotaion (자동회전의 성능해석(2) : 고속 자동회전의 성능)

  • Kim, Hak-Yoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.12-22
    • /
    • 2012
  • Performance variation of autorotating rotor was investigated. The shaft angle of the rotor is reduced while the flight velocity is increased. The BO-105 helicopter rotor blade was replaced by untwisted NACA 0012 airfoil and the rotor was simulated by using Transient Simulation Method(TSM) to judge the autorotation region for the variables. To simulate the compressibility effect at high speed flight, two-dimensional aerodynamic data was analyzed by compressible Navier-Stokes solver and Pitt/Peters inflow theory was adopted to simulate the induced velocity field. Thrust and lift coefficients, lift to drag ratio variations were investigated, also the lift and power were compared to those of BO-105 helicopter. Sharing lift and power between the autorotating rotor and wing was considered when the compound aircraft concept is introduced.

Trim Range and Characteristics of Autorotation(I): Rotor Speed Limit and Pitch Range (자동회전의 트림 범위와 특성(I): 로터 스피드 한계와 피치범위)

  • Kim, Hak-Yoon;Choi, Seong-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.487-497
    • /
    • 2011
  • Numerical analysis has been performed to investigate the rotor speed and pitch range variations when the airspeed is increased in autorotation. Transient Simulation Method(TSM) was used to obtain the steady states of autorotation. The rotor blade was analyzed by the two-dimensional compressible Navier-Stokes solver in order to adapt to the airspeed increase and the results were used in the transient simulation method. Meanwhile, the Pitt/Peters inflow theory was used to supply the induced velocity fields. For the prescribed torque equilibrium state, the combinations of velocity, shaft angle, and pitch angle were produced to investigate the rotor speeds and variable ranges. The rotor tip Mach number and rotor speed were correlated and the trim range of pitch angle was observed with respect to the shaft angle decrease.

Numerical Analysis on the Effect of High-Shear in a Rotor-Stator Mixer (Rotor-Stator Mixer 전단효과에 관한 수치 해석적 연구)

  • Yeum, Sang Hoon;Lee, Seok Soon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.39-48
    • /
    • 2019
  • The turbulent flow in the rotor-stator mixer is based on shear characteristics generated by the interaction of the stator with the rotor rotating at high speed. In this study, the flow characteristics analysis of the unsteady state generated by the interaction of the rotor and the stator in the prototype model of the emulsion-fuel related mixer development was performed with the MRF and SMM by applying the ANSYS FLUENT $k-{\varepsilon}$ (RKE) turbulence model. The behavior and shear characteristics of the flow particles generated at the interface between the designed rotor and stator, and trends such as velocity distribution and turbulence eddy dissipation, were predicted and verified using the CFD analysis.

A Wind Tunnel Test for Directional Control of Cruciform Parachutes (십자형 낙하산의 방향 제어에 관한 풍동시험 연구)

  • 임주창;김범수
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.20-24
    • /
    • 2006
  • Wind tunnel tests were conducted to compare gliding and turning performance of normal cruciform parachutes with newly modified cruciform parachutes. Modified cruciform parachute has better gliding performance than original cruciform parachutes but, modified cruciform parachute has worse turning performance than original cruciform parachute.

Effects of Transverse Shear Deformation and Rotary Inertia on Vibration of Rotating Polar Orthotropic Disks (극직교 이방성 회전원판의 진동에 대한 횡전단변형 및 회전관성 효과)

  • Kim, Dong-Hyun;Koo, Kyo-Nam
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.43-49
    • /
    • 2007
  • Dynamic instability of rotating disks is the most significant factor to limit its rotating speed. Application of composite materials to rotating disks may enhance the dynamic stability leading to a possible design of rotating disks with lightweight and high speed. Whereas much work has been done on the effect of transverse shear and rotary inertia, called Timoshenko effect, on the dynamic behavior of plates, there is little work on the correlation between the effect and the rotation of disk, especially nothing in case of composite disks. The dynamic equations of a rotating composite disk are formulated with the Timoshenko effect and the vibrational analysis is performed by using a commercial package MSC/NASTRAN. According to the results, the Timoshenko effect goes seesaw in some modes, unlike the well-known fact that the effect decreases as the rotating speed increases. And it can be concluded, based only on the present results, that decrement of the Timoshenko effect by disk rotation grows larger as the thickness ratio decreases, the diameter ratio increases, the modulus ratio increases, and the mode number increases.

An Experimental Study on Roll-Damping Characteristics of a Finned Spinning Projectile (회전발사체 미익형상 롤댐핑 특성에 관한 실험연구)

  • Oh, Se-Yoon;Lee, Do-Kwan;Kim, Sung-Cheol;Kim, Sang-Ho;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.894-900
    • /
    • 2012
  • The purpose of this research is to investigate the dynamic roll-damping characteristics of a spin-stabilized projectile in wind-tunnel testing. In the present work, the high-speed wind-tunnel tests for the roll-damping measurements were conducted on a finned spin-stabilized projectile model in the Agency for Defense Development's Trisonic Wind Tunnel at spin rates about 8,000 rpm. The test Mach numbers ranged from 0.6 to 0.9, and the angles of attack ranged from 0 to +15 deg. The evaluation of the bearing friction parameter was also conducted to eliminate the tare damping moment from the aerodynamic damping moment.

An Experimental Study on Roll-Damping Characteristics of a Spinning Projectile at High Speed Region (회전발사체 롤댐핑 특성에 관한 고속 유동장 실험연구)

  • Oh, Se-Yoon;Lee, Do-Kwan;Kim, Sung-Cheol;Kim, Sang-Ho;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.912-918
    • /
    • 2011
  • The purpose of this research is to determine the dynamic roll-damping data of a spinning projectile in wind-tunnel testing. In the present work, the high-speed wind-tunnel tests for the roll-damping measurements were conducted on a spin-stabilized projectile model in the Agency for Defense Development's Tri-Sonic Wind Tunnel at spin rates about 12,000 rpm. The test Mach numbers ranged from 0.7 to 1.05, and the angles of attack ranged from -4 to +10 deg. The validity of the wind-tunnel measurement techniques was evaluated by comparing them with the previous test results on the same configuration.