• Title/Summary/Keyword: 회전계수

Search Result 584, Processing Time 0.041 seconds

분산 자기 회로를 이용한 베어링리스 모터의 모델링

  • 노명규;박수진;박창용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.80-80
    • /
    • 2004
  • 베어링리스 모터는 기존의 전동기와 자기베어링을 결합한 기술로 축 길이가 줄어들어 회전 속도를 높일 수 있으며 소형화가 가능하다는 장점이 있다(Fig. 1). 베어링리스 모터를 설계하기 위한 첫 번째 단계는 베어링리스 모터의 수학적 모델을 도출하는 것인데, 기존의 연구에서 부상용 전류와 부상력의 관계는 잘 정립되어 있다. 그러나, 회전자의 변위에 따른 부상력의 변화는 명확히 정의되어 있지 안다. 본 논문에서는 분산 자기 회로 이론을 이용하여 회전자의 움직임에 따른 부상력의 변화를 스프링계수의 형태로 모델링하였다.(중략)

  • PDF

Vibration Analysis of a Moving Mass Travelling on the Timoshenko Rotating Shaft (티모센코 회전축을 따라 움직이는 질량의 진동해석)

  • Park, Yong-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.859-864
    • /
    • 2008
  • The dynamic interaction between the moving mass and the rotating Timoshenko shaft is investigated. The moving speed of the mass is presented by a constraint equation related to the rotating speed of the shaft. The dimensionless equations of motion for the rotating shaft with a moving mass by using the Timoshenko's beam theory. The dynamic responses of this system are studied. influences of dimensionless parameters such as the rotating speed ratio. the Rayleigh coefficient and the dimensionless axial force are discussed on the transient response and the maximum deflection of the moving system.

An Unsteady Numerical Method of Autorotation and the Effect of 2D Aerodynamic Coefficients (자동회전의 비정상 수치해법과 2차원 공력계수의 영향)

  • Kim, Hak-Yoon;Sheen, Dong-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.121-130
    • /
    • 2009
  • An unsteady numerical simulation method for an autorotating rotor in forward flight was developed. The flapping and rotational equations of motion of autorotation are continuously integrated for given time steps, meanwhile the induced velocity field at disc plane is obtained by the dynamic inflow theory embodying the unteadiness. The transitions from arbitrary initial states to equilibrium states were simulated. Steady autorotations as numerical solutions of equations were predicted by using two sources of blade airfoil data. The simulations using airfoil data which were obtained by a two dimensional Navier-Stokes solver in terms of angles of attack and Reynolds numbers have shown good agreements with wind tunnel experimental results.

Analysis of the Rotational Behavior of Piles under Lateral Loading Installed in Multi Layered Soil (다층지반에 근입된 수평재하 말뚝의 회전거동 분석)

  • Kang, Beong-Joon;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • One of the important use of piles is to furnish lateral support and nowadays it is getting highlighted due to the increase of skyscrapers, transmission towers, wind turbines, and other lateral action dependent structures. After Broms (1964), many researchers have suggested methods for estimating lateral capacity of pile. But each method assumes different earth pressure distribution and lateral earth pressure coefficient causing confusion on the part of pile designers. Lateral earth pressure, essential in lateral capacity estimation, is influenced by pile's rotational behavior under lateral load. Prasad and Chari (1999) assumed the rotation point of pile and suggested an equation of ultimate lateral load capacity. In this study, we investigate the depth of rotation point in both homogeneous soil and multi layered soil, and compare with the estimation value by previous research. Test results show that measured rotation point and estimated value by Prasad and Chari's equation show good agreement and multi layered condition affects the location of rotation point to be changed.

Simulation of Balls' Motion and their Kinetic Energy in a Tumbling Ball Mill (회전 볼밀내에 있어서 볼의 운동 및 운동에저지의 시뮬레이션)

  • Ryu, Ho-Jin
    • Korean Journal of Materials Research
    • /
    • v.7 no.4
    • /
    • pp.339-346
    • /
    • 1997
  • 회전 불밀에 있어서 볼의 운동을 비선형 spring과 비선형 deshpot로 구성된 Kelvin모델을 사용한 DEM(Distinct Element Method;개별요소법)에 의하여 2차원으로 해석하였다. 모델에 있어서 점성계수는 볼과 밀벽사이의 반발실험 데이타로 부터 결정하였다. 각볼의 동적인 운동은 비선형 점탄성과 Newton의 운동법칙를 기초로하여 모사되었다. 밀이 회전하는 동안 볼의 궤적과 동적인 운동은 실제 실험에 의한 밀내에서의 볼의 운동고 잘 일치하였다. 본 연구에서 제안된 모델 시뮬레이션은 회전 볼밀내의 실제의 3차원인 볼의 운동에 대한 해석에 중요한 단서가 될 수 있었다. 볼의 운동고 운동에너지는 회전 볼밀의 속도와 볼의 충진율에 의해 크게 영향을 받았다.

  • PDF

QRD-RLS Algorithm Implementation Using Double Rotation CORDIC (2회전 CORDIC을 이용한 QRD-RLS 알고리듬 구현)

  • 최민호;송상섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.692-699
    • /
    • 2004
  • In this paper we studied an implementation of QR decomposition-based RLS algorithm using modified Givens rotation method. Givens rotation can be obtained with a sequence of the CORDIC operations. In order to reduce the computing time of QR decomposition we restricted the number of iterations of the CORDIC operation per a Givens rotation and used double-rotation method to remove the square-root in the scaling factor.

A Study of Aerodynamic Modelling for Fin Unfolding Motion Analysis (공력면 전개 모사를 위한 공력 모델링 연구)

  • Jung, Suk-Young;Yoon, Sung-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.420-427
    • /
    • 2008
  • For simulation of a fin unfolding motion for the various aerodynamic conditions, equations and moments applying to the unfolding fin were modelled. Aerodynamic roll moment consists of the static roll moment and the damping moment, which were obtained through wind tunnel tests and numerical analyses respectively. Panel method was used to compute the roll damping coefficient with deflected fin, whose angle was equivalent to angle of attack due to the deployment motion. Roll damping coefficient is a function of angle of attack, sideslip angle, and deployment angle but not of angular velocity of deployment. Simulation with aerodynamic damping model gave more similar deployment time compared to fin deployment test results.

Evaluation of Particle Counting by Smartphone-based Fluorescence Smartscope and Particle Positioning in Spinning Helical Channel (스마트폰 기반 형광 smartscope의 입자계수 및 회전하는 나선형 채널의 입자정렬 성능 평가)

  • Park, Eunjung;Kim, Subin;Cho, Myoung-Ock;Kim, Kyunghoon;Shourav, Mohiuddin Khan;Kim, Sunwook;Lee, Jeonghoon;Kim, Jung Kyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.3
    • /
    • pp.19-28
    • /
    • 2015
  • With the aim of developing a smartphone-based point-of-care device that is small, inexpensive, and easy to handle by non-expert, we designed a fluorescence smartscope for counting particles and a DC motor-controlled particle positioning system. Our smartscope can count the number of fluorescent particles and fluorescently-stained white blood cells through a phone camera with an adaptor containing a LED, a ball lens and optical filters and an application running on a smartphone. The motor was controlled wirelessly via Bluetooth with an Android smartphone. We found that axial spinning of a helical microfluidic channel allows arrangement of particles having size similar to the white blood cells. The motor-controlled particle positioning system can minimize time-consuming manual processes and automate sample preparation process and thus, if integrated with the smartscope, it can be used for a point-of-care testing device based on a smartphone.