• Title/Summary/Keyword: 회분식 실험

Search Result 580, Processing Time 0.025 seconds

Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(1) (흡착제의 흡착특성 규명을 위한 흡착모델의 적용성 평가(1)-흡착등온식을 이용한 평가)

  • Na, Choon-Ki;Han, Moo-Young;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.606-616
    • /
    • 2011
  • The objectives of this study were to evaluate the applicability of adsorption models for adsorption properties of adsorbents. For this study, adsorption experiment of $NO_3^-$ ion using anion exchange resin has been investigated under adsorption equilibrium and kinetic in bach process. Adsorption equilibrium experiment were carried out that two conditions is change of adsorbate concentration and change of adsorbent weight. Experiment results have been analyzed by adsorption isotherm models, energy models and kinetic models. Under the condition of change of adsorbate concentration was best described by Sips and Redlich-Perterson isotherm models. However case of change of adsorbent weight was described by Langmuir isotherm models. It seems reasonable to assume that isotherm model was dominated by multiple mechanism according to experiment condition.

Simulation and Process Design of Pervaporation Plate-and-Frame Modules f3r Dehydration of Organic solvents (유기용매 탈수를 위한 투과증발 판틀형 모듈의 전산모사와 공정설계)

  • C. K. Yeom;Majid Kazi;Fakhir U. Baig
    • Membrane Journal
    • /
    • v.12 no.4
    • /
    • pp.226-239
    • /
    • 2002
  • A process simulation model of pervaporation process has been developed as a design tool to analyse and optimize the dehyhration of organic solvents through a commercial scale of pervaporative plate-and-frame modules that contain a stack of membrane sheets. In the simulation model, the mass balance, the heat balance and the concentration balance are integrated in a finite elements-in-succession method to simulate the overall process. In the integration method, a feed channel between membrane sheets in the modules was taken as differential unit element volume to simplify calculation procedure and shorten computing time. Some of permeation parameters used in the simulation model, were quantified directly from the dehydration experiment of ethanol through $AzeoSep^{TM}$-2002 membrane which is a commercial pervaporation membrane. The simulation model was verified by comparing the simulated values with experimental data. Using the model, continuous and batch pervaporation processes were simulated, respectively, to acquire basic data for analysing and optimizing in the dehydration of ethanol through the membrane. Based on the simulation results, a comparison between the continuous and the batch pervaporation processes would be discussed.

Feasibility Study on Reactive Material in Permeable Reactive Barriers Against Contaminated Groundwater with Ammonium from Unsanitary Landfill (암모늄으로 오염된 비위생 매립지 주변지반의 지하수 정화를 위한 반응벽체내 물질 연구)

  • 이승학;박준범
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • Batch and column tests were performed to develop the design factors for permeable reactive barriers(PRBs) against the contaminated groundwater with ammonium from unsanitary landfill. Clinoptilolite, one of natural zeolites having excellent cation exchange capacity(CEC), was chosen as the reactive material. In batch test, the reactivity of clinoptilolite to ammonium was examined by varying the initial concentration of ammonium and the particle size of clinoptilolites. One gram of clinoptilolite showed removal efficiency about 80% against the ammonium except in very high initial concentration of 80 ppm, but the effect of particle size of clinoptilolite was not noticeable. Permeability test was performed for the specimens made of clinoptilolite and Jumunjin sand with 20 : 80 weight ratio. Flexible wall permeameter was employed far permeability test. The specimen containing the washed 0.42-0.85mm clinoptilolite showed the highest permeability of about $10^{-3}$/s. In column test, the reactivity of mixed materials against ammonium in flowing condition was examined with the landfill leachate. With the test results, clinoptilolite was found to be a suitable material for PRBs against the contaminated groundwater with ammonium.

Methane Production Using Peel-type Fruit Wastes and Sewage Sludge in Batch Anaerobic Digestion Process (껍질 형태의 과일폐기물과 하수슬러지를 이용한 회분식 혐기 소화공정에서 메탄 생산)

  • Jeong, Tae-Young;Lee, Jong Hak;Chung, Hyung-Keun;Cha, Hyung Joon;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.542-546
    • /
    • 2009
  • Methane production using the mixed organic wastes of peel-type fruit wastes from apple or orange and sewage sludge was investigated in the batch anaerobic degradation process. When apple or orange peels with sewage sludge were used as mixed substrates, higher methane production was achieved under the condition of 3 : 7 (fruit peel : sewage sludge) mixing ratio. However, above the 3 : 7 mixing ratio, the pH of mixture was decreased from 8.0 to 4.5~4.7 due to organic acid production from the fruit wastes. Subsequently, methane production was low. The results in this study could be effectively applied to the methane gas production system as a bioenergy in the mixed batch anaerobic digestion process using the peel-type fruit wastes and sewage sludge.

Dewaxing of Sunflower Seed Oil (해바라기 유(油)의 탈납)

  • Rhee, Joon-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.112-117
    • /
    • 1979
  • By using the existing caustic refining system with a minimum modification and by using a combination of various emulsifiers(0.2 % sodium hexametaphosphate. 0.05 % sodium lauryl sulfate and 0.001 % dioctyl sodium sulfosuccinate), a new economical dewaxing process for sunflower seed oil was developed in order to reduce the cost of the dewaxing process. The results indicate that the waxes can be removed satisfactorily from the sunflower seed oil by emulsifying. batchwise or continuously, the oil with the aqueous surfactant solution, followed by centrifugation at ambient temperatures $(16{\sim}27^{\circ}C)$. Dewaxing loss for the batch process was satisfactory for both low wax-and high wax-crude oil, whereas dewaxing loss for the continuous process needs to be improved. The results indicate that initial level of wax content (low wax vs. high wax) did not affect the loss for batch process (0.82 % vs. 0.62 %), but affected the loss for continuous processes, regardless of the type of mixing mode (2.28 % and 5.68 % for low wax-and high wax-oil, respectively). It was also noted that the type of mixing mode (centactor vs. static mixer) for the continuous process affected the loss, regardless of the wax content (5.2 % and 2.8 % for contactor and static mixer, respectively).

  • PDF

Application of Soil Washing Technology to the Soil Contaminated by Heavy Metals (중금속에 의해 오염된 토양에 대한 토양세척기법의 적용성 연구)

  • 정동철;이지희;최상일
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.53-60
    • /
    • 1997
  • A series of batch and lab-scale pilot tests were conducted to optimize the design parameters for the application of soil washing techniques to the soil contaminated by heavy metals. Cu, Pb, and Zn were selected as target heavy metals. The concentrations of Cu, Pb, and Zn were 500mg/kg dry soil, 1, 000mg/kg dry soil, and 500mg/kg dry soil, respectively. Citric acid and oxalic acid were used for the extractants. In the batch tests, the extraction efficiencies for Cu, Pb, and Zn were 79%, 72%, 72%, respectively. The proper extractant concentration and dilution ratio(weight/volume) for Cu and Pb were turned to be citric acid 50mM and 1:5, respectively. The extraction efficiencies were enhanced with the addition of 1~2% OA-5 or SDS. From pilot scale tests for Pb, first stage and second stage of soil washing resulted in the extraction efficiency of 59% and 78%, respectively.

  • PDF

Characteristics of MEK Degradation using TiO2 Photocatalyst in the Batch-type Reactor-Metal Doping Effect (회분식 반응기에서 TiO2 광촉매의 MEK 분해특성-금속담지영향)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1579-1584
    • /
    • 2015
  • In photocatalytic reaction, the doping of metal matter can alter the titania surface properties. As such the metal matter can increase the rate of the reaction. The influence of metal doping and calcination condition of $TiO_2$ photocatalyst was investigated at the batch-type photoreactor. Several metal matters were doped to the $TiO_2$ catalyst to improve photodegradation efficiency. During the experiments, water content was 3wt%, and reactor temperature was $40^{\circ}C$. Palladium-doped $TiO_2$ was found to be the best, where as platinum or tungsten-added also showed good results. Additional doping of platinum or tungsten on Pd/$TiO_2$ had no increase on the removal efficiency. To obtain proper calcination condition, various experiments about calcination temperature and time were carried out. As a result, the optimum calcination condition was temperature of $400^{\circ}C$, time of 1 hour.

Batch Production of Chiral Epichlorohydrin by Enantioselective Hydrolysis Reaction using Rhodosporidium toruloides (Phodosporidium toruloides의 광학선택적 가수분해활성을 이용한 Chiral Epichlorohydrin의 회분식 생산)

  • 이은열;이재화
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.38-41
    • /
    • 2004
  • Enantioselective hydrolysis for the producing chiral epichlorohydrin from its racemic substrate was investigated using epoxide hydrolase activity of Rhodosporidium toruloides SJ-4. The effects of reaction parameters including pH, temperature, initial substrate concentration on initial hydrolysis rate and enantioselectivity were analyzed and optimized. The addition of detergent, Tween 20, enhanced the hydrolysis rate and enantioselectivity. Chiral (R)-epichlorohydrin with high optical purity (>99% ee) and yield of 25% (theoretically 50% maximum yield) was obtained from its racemate of 20 mM.

Mass Transfer of Citric and Acetic Acid by Reactive Extractant in Batch Extractor (회분식 추출기에서 반응추출제에 의한 구연산과 초산의 물질이동)

  • Lee, Han-Seob
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.223-229
    • /
    • 1994
  • The effect of agitation speed on mass transfer coefficient in the extraction of citric acid from mixed aqueous solutions of citric and acetic acid with n-butylacetate solutions of di-isotridecylamine(DITDA) and 50% mixture of tri-n-octyl and try-n-hexyl phosphine oxide(MOHPO), were studied in batch extractor. Experimental results showed that the degree of extraction was higher with increasing agitation speed, and was best at 200rpm and 30 minutes in batch extractor. The higher degree of extraction was obtained in mixed solution of citric-acetic acid by using DITDA than MOHPO as an carrier. Mass transfer coefficient was proportional to the degree of extraction, and $K_r=1.254{\times}10^{-3}Re^{0.536}$ was found for she extraction of citric acid by DITDA.

  • PDF

Removal Efficiency of Heavy Metals and Nutrients by Zeolite and Basic Oxygen Furnace Slag (제올라이트와 제강슬래그에 의한 중금속과 영양염류 복합오염물질의 제거 효과)

  • Kim, Yongwoo;Oh, Myounghak;Park, Junboum;Kwon, Osoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.13-19
    • /
    • 2014
  • Permeable reactive barrier has been recognized as the one of representative methods for remediation of contaminated groundwater. Reactive barrier system containing two and more reactive materials can remove multiple contaminants such as nutritive salts and heavy metals. In this study, removal efficiency of multiple contaminants was evaluated when both zeolite and basic oxygen furnace slag were used as reactive materials. Sequential batch test which consists of two materials was performed to evaluate removal efficiency comparing the reaction order of them against nutritive slats including ammonium and phosphate and heavy metal including cadmium. As a result, zeolite-basic oxygen furnace slag sequence batch test showed the best efficiency for removal of multiple contaminants including nutritive salts and heavy metal.