• Title/Summary/Keyword: 회귀의사결정나무

Search Result 141, Processing Time 0.023 seconds

Interesting Node Finding Criteria for Regression Trees (회귀의사결정나무에서의 관심노드 찾는 분류 기준법)

  • 이영섭
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.1
    • /
    • pp.45-53
    • /
    • 2003
  • One of decision tree method is regression trees which are used to predict a continuous response. The general splitting criteria in tree growing are based on a compromise in the impurity between the left and the right child node. By picking or the more interesting subsets and ignoring the other, the proposed new splitting criteria in this paper do not split based on a compromise of child nodes anymore. The tree structure by the new criteria might be unbalanced but plausible. It can find a interesting subset as early as possible and express it by a simple clause. As a result, it is very interpretable by sacrificing a little bit of accuracy.

Comparative Analysis of Predictors of Depression for Residents in a Metropolitan City using Logistic Regression and Decision Making Tree (로지스틱 회귀분석과 의사결정나무 분석을 이용한 일 대도시 주민의 우울 예측요인 비교 연구)

  • Kim, Soo-Jin;Kim, Bo-Young
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.829-839
    • /
    • 2013
  • This study is a descriptive research study with the purpose of predicting and comparing factors of depression affecting residents in a metropolitan city by using logistic regression analysis and decision-making tree analysis. The subjects for the study were 462 residents ($20{\leq}aged{\angle}65$) in a metropolitan city. This study collected data between October 7, 2011 and October 21, 2011 and analyzed them with frequency analysis, percentage, the mean and standard deviation, ${\chi}^2$-test, t-test, logistic regression analysis, roc curve, and a decision-making tree by using SPSS 18.0 program. The common predicting variables of depression in community residents were social dysfunction, perceived physical symptom, and family support. The specialty and sensitivity of logistic regression explained 93.8% and 42.5%. The receiver operating characteristic (roc) curve was used to determine an optimal model. The AUC (area under the curve) was .84. Roc curve was found to be statistically significant (p=<.001). The specialty and sensitivity of decision-making tree analysis were 98.3% and 20.8% respectively. As for the whole classification accuracy, the logistic regression explained 82.0% and the decision making tree analysis explained 80.5%. From the results of this study, it is believed that the sensitivity, the classification accuracy, and the logistics regression analysis as shown in a higher degree may be useful materials to establish a depression prediction model for the community residents.

A study for improving data mining methods for continuous response variables (연속형 반응변수를 위한 데이터마이닝 방법 성능 향상 연구)

  • Choi, Jin-Soo;Lee, Seok-Hyung;Cho, Hyung-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.917-926
    • /
    • 2010
  • It is known that bagging and boosting techniques improve the performance in classification problem. A number of researchers have proved the high performance of bagging and boosting through experiments for categorical response but not for continuous response. We study whether bagging and boosting improve data mining methods for continuous responses such as linear regression, decision tree, neural network through bagging and boosting. The analysis of eight real data sets prove the high performance of bagging and boosting empirically.

의사결정나무를 이용한 개인휴대통신 해지자 분석

  • 최종후;서두성
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.377-380
    • /
    • 1998
  • 본 논문에서는 최근 데이터마이닝의 도구로 활발하게 소개되고 있는 의사결정나무 분석을 이용하여 개인휴대통신의 해지자 분석을 실시한다. 또한 로지스틱 회귀모형을 이용하여 가입고객의 해지 가능성에 대한 점수화를 시도한다.

  • PDF

A Comparison of Predicting Movie Success between Artificial Neural Network and Decision Tree (기계학습 기반의 영화흥행예측 방법 비교: 인공신경망과 의사결정나무를 중심으로)

  • Kwon, Shin-Hye;Park, Kyung-Woo;Chang, Byeng-Hee
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.4
    • /
    • pp.593-601
    • /
    • 2017
  • In this paper, we constructed the model of production/investment, distribution, and screening by using variables that can be considered at each stage according to the value chain stage of the movie industry. To increase the predictive power of the model, a regression analysis was used to derive meaningful variables. Based on the given variables, we compared the difference in predictive power between the artificial neural network, which is a machine learning analysis method, and the decision tree analysis method. As a result, the accuracy of artificial neural network was higher than that of decision trees when all variables were added in production/ investment model and distribution model. However, decision trees were more accurate when selected variables were applied according to regression analysis results. In the screening model, the accuracy of the artificial neural network was higher than the accuracy of the decision tree regardless of whether the regression analysis result was reflected or not. This paper has an implication which we tried to improve the performance of movie prediction model by using machine learning analysis. In addition, we tried to overcome a limitation of linear approach by reflecting the results of regression analysis to ANN and decision tree model.

Analysis of Korean Adolescents' Life Satisfaction based on Public Database and Data Mining Techniques: Emphasis on Decision Tree (공공 DB 데이터마이닝 기법을 활용한 국내 청소년 삶의 만족도 분석에 관한 실증연구: 의사결정나무 기법을 중심으로)

  • Jo, Hyun Jin;Ko, Geo Nu;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.297-309
    • /
    • 2020
  • This study focuses on the application of the data mining technique logistic regression analysis and decision tree analysis to the domestic public database called Korean Children Youth Panel Survey (KCYPS) to derive a series of important factors affecting the enhancement of life satisfaction of domestic youth. As a result, the general impact factors on life satisfaction for each grade were derived from logistic regression. Using decision tree analysis, we came to conclusions that those factors such as depression, overall grade satisfaction, household economic level, and school adaptation play crucial roles in affecting high school adolesscents' life satisfaction.

A Study on Creation Plan of the Local Weather Prediction Method Using Data Mining Techniques (데이터마이닝 기법을 이용한 국지기상예보칙 작성 방안 연구)

  • Choi, Jae-Hoon;Lee, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11c
    • /
    • pp.1351-1354
    • /
    • 2003
  • 데이터 마이닝 기법 중 회귀분석 기법과 의사절정나무 분석 기법을 이용하여 국지기상예보칙을 작성하는 방안을 연구하였다. 회귀분석기법을 이용하여 예보값에 영향을 미치는 예보요소를 도출하고, 도출된 예보요소를 회귀분석 기법과 의사결정나무 분석 기법에 적용하여 예보칙을 작성하였다.

  • PDF

Study on Detection Technique for Cochlodinium polykrikoides Red tide using Logistic Regression Model and Decision Tree Model (로지스틱 회귀모형과 의사결정나무 모형을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구)

  • Bak, Su-Ho;Kim, Heung-Min;Kim, Bum-Kyu;Hwang, Do-Hyun;Unuzaya, Enkhjargal;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.777-786
    • /
    • 2018
  • This study propose a new method to detect Cochlodinium polykrikoides on satellite images using logistic regression and decision tree. We used spectral profiles(918) extracted from red tide, clear water and turbid water as training data. The 70% of the entire data set was extracted and used for model training, and the classification accuracy of the model was evaluated by using the remaining 30%. As a result of the accuracy evaluation, the logistic regression model showed about 97% classification accuracy, and the decision tree model showed about 86% classification accuracy.

An Analysis of Choice Behavior for Tour Type of Commercial Vehicle using Decision Tree (의사결정나무를 이용한 화물자동차 투어유형 선택행태 분석)

  • Kim, Han-Su;Park, Dong-Ju;Kim, Chan-Seong;Choe, Chang-Ho;Kim, Gyeong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.6
    • /
    • pp.43-54
    • /
    • 2010
  • In recent years there have been studies on tour based approaches for freight travel demand modelling. The purpose of this paper is to analyze tour type choice behavior of commercial vehicles which are divided into round trips and chained tours. The methods of the study are based on the decision tree and the logit model. The results indicates that the explanation variables for classifying tour types of commercial vehicles are loading factor, average goods quantity, and total goods quantity. The results of the decision tree method are similar to those of logit model. In addition, the explanation variables for tour type classification of small trucks are not different from those for medium trucks', implying that the most important factor on the vehicle tour planning is how to load goods such as shipment size and total quantity.

A Study on Regional Variations for Disease-specific Cardiac Arrest (질환성 심정지 발생의 지역별 변이에 관한 연구)

  • Park, Il-Su;Kim, Eun-Ju;Kim, Yoo-Mi;Hong, Sung-Ok;Kim, Young-Taek;Kang, Sung-Hong
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.353-366
    • /
    • 2015
  • The purpose of this study was to examine how region-specific characteristics affect the occurrence of cardiac arrest. To analyze, we combined a unique data set including key indicators of health condition and cardiac arrest occurrence at the 244 small administrative districts. Our data came from two main sources in Korea Center For Disease Control and Prevention (KCDC): 2010 Out-of-Hospital Cardiac Arrest Surveillance and Community Health Survey. We analyzed data by using multiple regression, geographically weighted regression and decision tree. Decision tree model is selected as the final model to explain regional variations of cardiac arrest. Factors of regional variations of cardiac arrest occurrence are population density, diagnosis rates of hypertension, stress level, participating screening level, high drinking rate, and smoking rate. Taken as a whole, accounting for geographical variations of health conditions, health behaviors and other socioeconomic factors are important when regionally customized health policy is implemented to decrease the cardiac arrest occurrence.