의사결정나무 분석 기법 중 하나인 회귀의사결정나무는 연속적인 반응변수를 예측할 때 사용된다. 나무 구조를 형성할 때, 전통적인 분류 기준법은 왼쪽과 오른쪽 자식노드의 불순도를 결합하여 이루어진다. 그러나 본 논문에서 제안하는 새로운 분류 기준법은 관심있는 한쪽만 선택하고 다른 나머지 자식노드는 큰 관심이 없어 무시함으로써 더 이상 결합하여 구하는 것이 아니다. 따라서 나무 구조는 불균형적일 수 있으나 이해하기가 쉽다. 즉, 관심있는 부분집합을 가능한 한 빨리 찾음으로써 단지 몇 개의 조건으로 쉽게 표현할 수 있으며, 정확도는 다소 떨어지지만 설명력은 아주 높다.
본 연구는 로지스틱 회귀분석과 의사결정나무 분석을 활용하여 일 대도시 주민의 우울에 영향을 주는 요인을 예측하고 비교하고자 시도된 서술적 조사연구이다. 연구대상은 20세에서 65세 미만의 일 대도시 주민 462명이었다. 자료 수집은 2011년 10월 7일부터 10월 21일까지이었으며, 자료 분석은 SPSS 18.0 프로그램을 이용하여 빈도, 백분율, 평균과 표준편차 및 ${\chi}^2$-test, t-test, 로지스틱 회귀분석, roc curve, 의사결정나무 분석으로 분석하였다. 본 연구 결과, 로지스틱 회귀분석과 의사결정나무 분석에서 공통적으로 나타난 우울 예측요인은 사회부적응, 주관적 신체증상 및 가족 지지이었다. 로지스틱 회귀분석에서 특이도 93.8%, 민감도 42.5%이었고, 본 연구의 모형 적합도를 roc curve 검증 한 결과 AUC=.84으로 본 연구 모형은 적합(p=<.001)하다고 할 수 있다. 우울예측에 대한 의사결정나무 분석은 분류에 대한 예측 정확도에서 특이도 98.3%, 민감도 20.8%이었고, 전체 분류 정확도는 로지스틱 회귀분석은 82.0%, 의사결정나무 분석은 80.5% 이었다. 본 연구 결과 민감성과 분류 정확도와 더 높게 나타난 로지스틱 회귀분석 방법이 지역 주민의 우울 예측 모형을 구축하는데 더 유용한 자료로 사용될 수 있으리라 사료된다.
Journal of the Korean Data and Information Science Society
/
제21권5호
/
pp.917-926
/
2010
배깅과 부스팅의 기법은 예측력을 향상 시킨다고 알려져 있다. 이는 비교 실험을 통하여 성능이 검증 되었는데, 목표변수가 범주형인 경우에 특정 의사결정나무 알고리즘인 회귀분류나무만 주로 고려되었다. 본 논문에서는 의사결정나무 외에도 다른 데이터마이닝 방법도 고려하여 목표변수가 연속형인 경우에 배깅과 부스팅 기법의 성능 검증을 위한 비교 실험을 실시하였다. 구체적으로, 데이터마이닝 알고리즘 기법인 선형회귀, 의사결정나무, 신경망에 배깅 및 부스팅 앙상블 기법을 결합하여 8개의 데이터를 비교 분석하였다. 실험 결과로 연속형 자료에 대한 여러 데이터마이닝 알고리즘에도 배깅과 부스팅의 기법이 성능 향상에 도움이 되는 것으로 확인되었다.
본 연구는 영화산업의 가치사슬단계에 따라 각 단계에서 고려할 수 있는 변인을 활용하여 제작/투자, 배급, 상영단계별 모형을 구성하였다. 모형의 예측력을 높이기 위해 회귀분석으로 유의미한 변인을 도출하여 모형을 추가로 설정하였다. 주어진 변인을 바탕으로 기계학습 분석방법인 인공신경망과 의사결정나무 분석방법 간의 예측력 차이를 비교하였다. 분석 결과, 제작/투자 모형과 배급 모형에서 모든 변인을 투입했을 때는 인공신경망의 정확도가 의사결정나무보다 높았으나, 회귀분석결과에 따라 선정된 변인을 투입하였을 때는 의사결정나무의 정확도가 더 높았다. 상영 모형에서는 회귀분석결과의 반영여부와 관계없이 인공신경망의 정확도가 의사결정나무의 정확도보다 높게 나타났다. 본 논문은 영화흥행 예측연구에 기계학습기법을 적용하여 예측성과가 향상됨을 확인하였다는데 의의가 있다. 선형회귀분석 결과를 기계학습기법에 반영함으로써 기존의 선형적 분석방법의 한계를 극복하고자 하였다.
본 연구는 국내 공공 DB에 데이터마이닝 기법인 로지스틱 회귀분석과 의사결정나무 분석을 적용하여 국내 청소년의 삶의 만족도 증진에 관한 의미 있는 의사결정 규칙을 추출하는 과정을 분석한다. 분석을 위하여 한국아동·청소년패널조사(KYCPS) 중에서 중1 패널데이터의 4~6차연도 자료인 고등학생 학년별 자료를 활용하였다. 로지스틱 회귀분석으로 추출된 영향요인은 1학년은 전체 성적 만족도, 주의집중 문제, 우울, 자아 탄력성, 애정, 과잉간섭, 학습활동, 교사관계, 2학년은 가정의 경제 수준, 건강상태, 전체 성적 만족도, 신뢰, 소외, 학습활동, 학교규칙, 교우관계, 교사 관계, 3학년은 가정의 경제 수준, 전체 성적 만족도, 우울, 자아 탄력성, 애정, 학대, 학교규칙, 교사 관계로 나타났다. 의사결정나무 기법을 적용한 결과 국내 고등학생의 삶의 만족도는 개인의 정서 문제, 학교성적, 가정의 경제적 환경, 학교적응 등에 의하여 복합적으로 영향을 받는 것으로 파악되었다.
데이터 마이닝 기법 중 회귀분석 기법과 의사절정나무 분석 기법을 이용하여 국지기상예보칙을 작성하는 방안을 연구하였다. 회귀분석기법을 이용하여 예보값에 영향을 미치는 예보요소를 도출하고, 도출된 예보요소를 회귀분석 기법과 의사결정나무 분석 기법에 적용하여 예보칙을 작성하였다.
본 연구에서는 기계학습 기법의 한 갈래인 로지스틱 회귀모형과 의사결정나무 모형을 이용하여 인공위성 영상에서 Cochlodinium polykrikoides 적조 픽셀을 탐지하는 방법을 제안한다. 학습자료로 적조, 청수, 탁수해역에서 추출된 수출광량 분광 프로파일(918개)을 활용하였다. 전체 데이터셋의 70%를 추출하여 모형 학습에 활용하였으며, 나머지 30%를 이용하여 모형의 분류 정확도를 평가하였다. 정확도 평가 결과 로지스틱 회귀모형은 약 97%의 분류 정확도를 보였으며, 의사결정나무 모형은 약 86%의 분류 정확도를 보였다.
최근 화물수요모형에 화물자동차 투어행태를 반영하기 위한 접근방법이 제시되었다. 화물자동차 이동을 투어기반 접근방법으로 모형화 하기 위해서는 화물자동차 투어와 투어유형에 대한 이해가 필요하다. 본 연구는 화물자동차 투어유형을 왕복형 투어와 체인형 투어로 구분하여 이들 투어유형 선택행태를 분석하였다. 투어유형 선택행태를 분석하기 위한 방법으로는 의사결정나무(decision tree)와 로짓모형(logit model)을 이용하였다. 분석결과 화물자동차 투어유형을 분류하는 설명변수로 화물적재율, 평균화물량, 총화물량이 선정되었으며, 의사결정나무와 로짓모형이 유사한 결과를 도출하였다. 또한 소형과 중형 화물자동차의 투어유형을 분류하는 설명변수가 큰 차이를 보이지 않음에 따라 화물자동차 투어를 계획함에 있어 화물을 어떻게 적재할 것인지가 가장 중요한 것으로 나타났다. 의사결정나무와 로짓모형의 예측력을 비교한 결과는 의사결정나무가 로짓모형에 비해 상대적으로 우수한 결과를 보였는데, 이는 화물자동차 투어유형을 분류함에 있어 로짓모형과 같이 설명변수의 선형적 결합에 의한 분류 보다는 의사결정나무와 같이 다수 설명변수들의 규칙조합으로 분류하는 것이 효과적임을 나타낸다.
본 연구의 목적은 심정지 발생의 지역별 변이요인을 규명하는 것이다. 분석을 위하여 244개 행정구역별로 건강상태 및 심정지발생에 관한 지표를 수집하여 분석용 데이터 셋을 구축하였다. 지표 선정을 위해 질병관리본부의 2010년 심정지 조사자료와 지역사회 건강조사자료를 이용하였다. 자료 분석은 다중회귀분석, 지리적 가중회귀분석, 의사결정나무분석 기법을 이용하였다. 의사결정나무를 이용하여 심정지 발생의 지역별 변이를 설명하는 최종 모형을 설정하였다. 최종 모형인 의사결정나무에 근거한 지역별 변이요인은 인구밀도, 고혈압 평생의사 경험진단율, 스트레스 인지율, 고지혈증 평생의사 경험진단율, 우울증 경험률, 건강검진 수검율, 고위험음주율, 현재 흡연율로 나타났다. 심정지 발생을 감소시키기 위한 지역별 보건정책의 수립은 지역의 건강상태, 건강행위 및 사회경제적 요인 등에 근거하여 이루어질 필요가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.