• 제목/요약/키워드: 회귀의사결정나무

검색결과 141건 처리시간 0.022초

회귀의사결정나무에서의 관심노드 찾는 분류 기준법 (Interesting Node Finding Criteria for Regression Trees)

  • 이영섭
    • 응용통계연구
    • /
    • 제16권1호
    • /
    • pp.45-53
    • /
    • 2003
  • 의사결정나무 분석 기법 중 하나인 회귀의사결정나무는 연속적인 반응변수를 예측할 때 사용된다. 나무 구조를 형성할 때, 전통적인 분류 기준법은 왼쪽과 오른쪽 자식노드의 불순도를 결합하여 이루어진다. 그러나 본 논문에서 제안하는 새로운 분류 기준법은 관심있는 한쪽만 선택하고 다른 나머지 자식노드는 큰 관심이 없어 무시함으로써 더 이상 결합하여 구하는 것이 아니다. 따라서 나무 구조는 불균형적일 수 있으나 이해하기가 쉽다. 즉, 관심있는 부분집합을 가능한 한 빨리 찾음으로써 단지 몇 개의 조건으로 쉽게 표현할 수 있으며, 정확도는 다소 떨어지지만 설명력은 아주 높다.

로지스틱 회귀분석과 의사결정나무 분석을 이용한 일 대도시 주민의 우울 예측요인 비교 연구 (Comparative Analysis of Predictors of Depression for Residents in a Metropolitan City using Logistic Regression and Decision Making Tree)

  • 김수진;김보영
    • 한국콘텐츠학회논문지
    • /
    • 제13권12호
    • /
    • pp.829-839
    • /
    • 2013
  • 본 연구는 로지스틱 회귀분석과 의사결정나무 분석을 활용하여 일 대도시 주민의 우울에 영향을 주는 요인을 예측하고 비교하고자 시도된 서술적 조사연구이다. 연구대상은 20세에서 65세 미만의 일 대도시 주민 462명이었다. 자료 수집은 2011년 10월 7일부터 10월 21일까지이었으며, 자료 분석은 SPSS 18.0 프로그램을 이용하여 빈도, 백분율, 평균과 표준편차 및 ${\chi}^2$-test, t-test, 로지스틱 회귀분석, roc curve, 의사결정나무 분석으로 분석하였다. 본 연구 결과, 로지스틱 회귀분석과 의사결정나무 분석에서 공통적으로 나타난 우울 예측요인은 사회부적응, 주관적 신체증상 및 가족 지지이었다. 로지스틱 회귀분석에서 특이도 93.8%, 민감도 42.5%이었고, 본 연구의 모형 적합도를 roc curve 검증 한 결과 AUC=.84으로 본 연구 모형은 적합(p=<.001)하다고 할 수 있다. 우울예측에 대한 의사결정나무 분석은 분류에 대한 예측 정확도에서 특이도 98.3%, 민감도 20.8%이었고, 전체 분류 정확도는 로지스틱 회귀분석은 82.0%, 의사결정나무 분석은 80.5% 이었다. 본 연구 결과 민감성과 분류 정확도와 더 높게 나타난 로지스틱 회귀분석 방법이 지역 주민의 우울 예측 모형을 구축하는데 더 유용한 자료로 사용될 수 있으리라 사료된다.

연속형 반응변수를 위한 데이터마이닝 방법 성능 향상 연구 (A study for improving data mining methods for continuous response variables)

  • 최진수;이석형;조형준
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.917-926
    • /
    • 2010
  • 배깅과 부스팅의 기법은 예측력을 향상 시킨다고 알려져 있다. 이는 비교 실험을 통하여 성능이 검증 되었는데, 목표변수가 범주형인 경우에 특정 의사결정나무 알고리즘인 회귀분류나무만 주로 고려되었다. 본 논문에서는 의사결정나무 외에도 다른 데이터마이닝 방법도 고려하여 목표변수가 연속형인 경우에 배깅과 부스팅 기법의 성능 검증을 위한 비교 실험을 실시하였다. 구체적으로, 데이터마이닝 알고리즘 기법인 선형회귀, 의사결정나무, 신경망에 배깅 및 부스팅 앙상블 기법을 결합하여 8개의 데이터를 비교 분석하였다. 실험 결과로 연속형 자료에 대한 여러 데이터마이닝 알고리즘에도 배깅과 부스팅의 기법이 성능 향상에 도움이 되는 것으로 확인되었다.

의사결정나무를 이용한 개인휴대통신 해지자 분석

  • 최종후;서두성
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1998년도 추계학술대회 논문집
    • /
    • pp.377-380
    • /
    • 1998
  • 본 논문에서는 최근 데이터마이닝의 도구로 활발하게 소개되고 있는 의사결정나무 분석을 이용하여 개인휴대통신의 해지자 분석을 실시한다. 또한 로지스틱 회귀모형을 이용하여 가입고객의 해지 가능성에 대한 점수화를 시도한다.

  • PDF

기계학습 기반의 영화흥행예측 방법 비교: 인공신경망과 의사결정나무를 중심으로 (A Comparison of Predicting Movie Success between Artificial Neural Network and Decision Tree)

  • 권신혜;박경우;장병희
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권4호
    • /
    • pp.593-601
    • /
    • 2017
  • 본 연구는 영화산업의 가치사슬단계에 따라 각 단계에서 고려할 수 있는 변인을 활용하여 제작/투자, 배급, 상영단계별 모형을 구성하였다. 모형의 예측력을 높이기 위해 회귀분석으로 유의미한 변인을 도출하여 모형을 추가로 설정하였다. 주어진 변인을 바탕으로 기계학습 분석방법인 인공신경망과 의사결정나무 분석방법 간의 예측력 차이를 비교하였다. 분석 결과, 제작/투자 모형과 배급 모형에서 모든 변인을 투입했을 때는 인공신경망의 정확도가 의사결정나무보다 높았으나, 회귀분석결과에 따라 선정된 변인을 투입하였을 때는 의사결정나무의 정확도가 더 높았다. 상영 모형에서는 회귀분석결과의 반영여부와 관계없이 인공신경망의 정확도가 의사결정나무의 정확도보다 높게 나타났다. 본 논문은 영화흥행 예측연구에 기계학습기법을 적용하여 예측성과가 향상됨을 확인하였다는데 의의가 있다. 선형회귀분석 결과를 기계학습기법에 반영함으로써 기존의 선형적 분석방법의 한계를 극복하고자 하였다.

공공 DB 데이터마이닝 기법을 활용한 국내 청소년 삶의 만족도 분석에 관한 실증연구: 의사결정나무 기법을 중심으로 (Analysis of Korean Adolescents' Life Satisfaction based on Public Database and Data Mining Techniques: Emphasis on Decision Tree)

  • 조현진;고건우;이건창
    • 디지털융복합연구
    • /
    • 제18권6호
    • /
    • pp.297-309
    • /
    • 2020
  • 본 연구는 국내 공공 DB에 데이터마이닝 기법인 로지스틱 회귀분석과 의사결정나무 분석을 적용하여 국내 청소년의 삶의 만족도 증진에 관한 의미 있는 의사결정 규칙을 추출하는 과정을 분석한다. 분석을 위하여 한국아동·청소년패널조사(KYCPS) 중에서 중1 패널데이터의 4~6차연도 자료인 고등학생 학년별 자료를 활용하였다. 로지스틱 회귀분석으로 추출된 영향요인은 1학년은 전체 성적 만족도, 주의집중 문제, 우울, 자아 탄력성, 애정, 과잉간섭, 학습활동, 교사관계, 2학년은 가정의 경제 수준, 건강상태, 전체 성적 만족도, 신뢰, 소외, 학습활동, 학교규칙, 교우관계, 교사 관계, 3학년은 가정의 경제 수준, 전체 성적 만족도, 우울, 자아 탄력성, 애정, 학대, 학교규칙, 교사 관계로 나타났다. 의사결정나무 기법을 적용한 결과 국내 고등학생의 삶의 만족도는 개인의 정서 문제, 학교성적, 가정의 경제적 환경, 학교적응 등에 의하여 복합적으로 영향을 받는 것으로 파악되었다.

데이터마이닝 기법을 이용한 국지기상예보칙 작성 방안 연구 (A Study on Creation Plan of the Local Weather Prediction Method Using Data Mining Techniques)

  • 최재훈;이상훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (하)
    • /
    • pp.1351-1354
    • /
    • 2003
  • 데이터 마이닝 기법 중 회귀분석 기법과 의사절정나무 분석 기법을 이용하여 국지기상예보칙을 작성하는 방안을 연구하였다. 회귀분석기법을 이용하여 예보값에 영향을 미치는 예보요소를 도출하고, 도출된 예보요소를 회귀분석 기법과 의사결정나무 분석 기법에 적용하여 예보칙을 작성하였다.

  • PDF

로지스틱 회귀모형과 의사결정나무 모형을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구 (Study on Detection Technique for Cochlodinium polykrikoides Red tide using Logistic Regression Model and Decision Tree Model)

  • 박수호;김흥민;김범규;황도현;엥흐자리갈 운자야;윤홍주
    • 한국전자통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.777-786
    • /
    • 2018
  • 본 연구에서는 기계학습 기법의 한 갈래인 로지스틱 회귀모형과 의사결정나무 모형을 이용하여 인공위성 영상에서 Cochlodinium polykrikoides 적조 픽셀을 탐지하는 방법을 제안한다. 학습자료로 적조, 청수, 탁수해역에서 추출된 수출광량 분광 프로파일(918개)을 활용하였다. 전체 데이터셋의 70%를 추출하여 모형 학습에 활용하였으며, 나머지 30%를 이용하여 모형의 분류 정확도를 평가하였다. 정확도 평가 결과 로지스틱 회귀모형은 약 97%의 분류 정확도를 보였으며, 의사결정나무 모형은 약 86%의 분류 정확도를 보였다.

의사결정나무를 이용한 화물자동차 투어유형 선택행태 분석 (An Analysis of Choice Behavior for Tour Type of Commercial Vehicle using Decision Tree)

  • 김한수;박동주;김찬성;최창호;김경수
    • 대한교통학회지
    • /
    • 제28권6호
    • /
    • pp.43-54
    • /
    • 2010
  • 최근 화물수요모형에 화물자동차 투어행태를 반영하기 위한 접근방법이 제시되었다. 화물자동차 이동을 투어기반 접근방법으로 모형화 하기 위해서는 화물자동차 투어와 투어유형에 대한 이해가 필요하다. 본 연구는 화물자동차 투어유형을 왕복형 투어와 체인형 투어로 구분하여 이들 투어유형 선택행태를 분석하였다. 투어유형 선택행태를 분석하기 위한 방법으로는 의사결정나무(decision tree)와 로짓모형(logit model)을 이용하였다. 분석결과 화물자동차 투어유형을 분류하는 설명변수로 화물적재율, 평균화물량, 총화물량이 선정되었으며, 의사결정나무와 로짓모형이 유사한 결과를 도출하였다. 또한 소형과 중형 화물자동차의 투어유형을 분류하는 설명변수가 큰 차이를 보이지 않음에 따라 화물자동차 투어를 계획함에 있어 화물을 어떻게 적재할 것인지가 가장 중요한 것으로 나타났다. 의사결정나무와 로짓모형의 예측력을 비교한 결과는 의사결정나무가 로짓모형에 비해 상대적으로 우수한 결과를 보였는데, 이는 화물자동차 투어유형을 분류함에 있어 로짓모형과 같이 설명변수의 선형적 결합에 의한 분류 보다는 의사결정나무와 같이 다수 설명변수들의 규칙조합으로 분류하는 것이 효과적임을 나타낸다.

질환성 심정지 발생의 지역별 변이에 관한 연구 (A Study on Regional Variations for Disease-specific Cardiac Arrest)

  • 박일수;김은주;김유미;홍성옥;김영택;강성홍
    • 디지털융복합연구
    • /
    • 제13권1호
    • /
    • pp.353-366
    • /
    • 2015
  • 본 연구의 목적은 심정지 발생의 지역별 변이요인을 규명하는 것이다. 분석을 위하여 244개 행정구역별로 건강상태 및 심정지발생에 관한 지표를 수집하여 분석용 데이터 셋을 구축하였다. 지표 선정을 위해 질병관리본부의 2010년 심정지 조사자료와 지역사회 건강조사자료를 이용하였다. 자료 분석은 다중회귀분석, 지리적 가중회귀분석, 의사결정나무분석 기법을 이용하였다. 의사결정나무를 이용하여 심정지 발생의 지역별 변이를 설명하는 최종 모형을 설정하였다. 최종 모형인 의사결정나무에 근거한 지역별 변이요인은 인구밀도, 고혈압 평생의사 경험진단율, 스트레스 인지율, 고지혈증 평생의사 경험진단율, 우울증 경험률, 건강검진 수검율, 고위험음주율, 현재 흡연율로 나타났다. 심정지 발생을 감소시키기 위한 지역별 보건정책의 수립은 지역의 건강상태, 건강행위 및 사회경제적 요인 등에 근거하여 이루어질 필요가 있다.