• Title/Summary/Keyword: 회귀알고리즘

Search Result 558, Processing Time 0.025 seconds

Detection and Remove Algorithm of B/W Line Scratch on Old Film by Linear Recursive Curve Trace (선형 회귀곡선 추적을 이용한 고전 필름의 흑,백 라인 스크래치 검출과 제거 알고리즘)

  • Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.6
    • /
    • pp.36-42
    • /
    • 2007
  • According to the increased demand of high quality multimedia content, it needs to recover an old movies. But the film of old movie is damaged with line scratches and dust. In this paper, the detection and restoration algorithm of B/W line scratch is proposed. Our scheme estimates and interpolates the damaged partial information of line scratch using the linear recursive curve trace which consider the intensity values of left and right region of line scratch and then median filtering processed. As a result, the film image PSNR 44.68 with B/W line scratch is increased up to 48.60 and the intensity of the interpolate pixel is approached about 14 against the pixel of original image.

A study for improving data mining methods for continuous response variables (연속형 반응변수를 위한 데이터마이닝 방법 성능 향상 연구)

  • Choi, Jin-Soo;Lee, Seok-Hyung;Cho, Hyung-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.917-926
    • /
    • 2010
  • It is known that bagging and boosting techniques improve the performance in classification problem. A number of researchers have proved the high performance of bagging and boosting through experiments for categorical response but not for continuous response. We study whether bagging and boosting improve data mining methods for continuous responses such as linear regression, decision tree, neural network through bagging and boosting. The analysis of eight real data sets prove the high performance of bagging and boosting empirically.

Forecasting of Heat Demand in Winter Using Linear Regresson Models for Korea District Heating Corporation (한국지역난방공사의 겨울철 열수요 예측을 위한 선형회귀모형 개발)

  • Baek, Jong-Kwan;Han, Jung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1488-1494
    • /
    • 2011
  • In this paper, we propose an algorithm using linear regression model that forecasts the demand of heated water in winter. To supply heated water to apartments, stores and office buildings, Korea District Heating Corp.(KDHC) operates boilers including electric power generators. In order to operate facilities generating heated water economically, it is essential to forecast daily demand of heated water with accuracy. Analysis of history data of Kangnam Branch of KDHC in 2006 and 2007 reveals that heated water supply on previous day as well as temperature are the most important factors to forecast the daily demand of heated water. When calculated by the proposed regression model, mean absolute percentage error for the demand of heated water in winter of the year 2006 through 2009 does not exceed 3.87%.

A Study of the Valid Model(Kernel Regression) of Main Feed-Water for Turbine Cycle (주급수 유량의 유효 모델(커널 회귀)에 대한 연구)

  • Yang, Hac-Jin;Kim, Seong-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.663-670
    • /
    • 2019
  • Corrective thermal performance analysis is required for power plants' turbine cycles to determine the performance status of the cycle and improve the economic operation of the power plant. We developed a sectional classification method for the main feed-water flow to make precise corrections for the performance analysis based on the Performance Test Code (PTC) of the American Society of Mechanical Engineers (ASME). The method was developed for the estimation of the turbine cycle performance in a classified section. The classification is based on feature identification of the correlation status of the main feed-water flow measurements. We also developed predictive algorithms for the corrected main feed-water through a Kernel Regression (KR) model for each classified feature area. The method was compared with estimation using an Artificial Neural Network (ANN). The feature classification and predictive model provided more practical and reliable methods for the corrective thermal performance analysis of a turbine cycle.

Outlier detection in time series data (시계열 자료에서의 특이치 발견)

  • Choi, Jeong In;Um, In Ok;Choa, Hyung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.907-920
    • /
    • 2016
  • This study suggests an outlier detection algorithm that uses quantile autoregressive model in time series data, eventually applying it to actual stock manipulation cases by comparing its performance to existing methods. Studies on outlier detection have traditionally been conducted mostly in general data and those in time series data are insufficient. They have also been limited to a parametric model, which is not convenient as it is complicated with an analysis that takes a long time. Thus, we suggest a new algorithm of outlier detection in time series data and through various simulations, compare it to existing algorithms. Especially, the outlier detection algorithm in time series data can be useful in finding stock manipulation. If stock price which had a certain pattern goes out of flow and generates an outlier, it can be due to intentional intervention and manipulation. We examined how fast the model can detect stock manipulations by applying it to actual stock manipulation cases.

Augmented Multiple Regression Algorithm for Accurate Estimation of Localized Solar Irradiance (국지적 일사량 산출 정확도 향상을 위한 다중회귀 증강 알고리즘)

  • Choi, Ji Nyeong;Lee, Sanghee;Ahn, Ki-Beom;Kim, Sug-Whan;Kim, Jinho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1435-1447
    • /
    • 2020
  • The seasonal variations in weather parameters can significantly affect the atmospheric transmission characteristics. Herein, we propose a novel augmented multiple regression algorithm for the accurate estimation of atmospheric transmittance and solar irradiance over highly localized areas. The algorithm employs 1) adaptive atmospheric model selection using measured meteorological data and 2) multiple linear regression computation augmented with the conventional application of MODerate resolution atmospheric TRANsmission (MODTRAN). In this study, the proposed algorithm was employed to estimate the solar irradiance over Taean coastal area using the 2018 clear days' meteorological data of the area, and the results were compared with the measurement data. The difference between the measured and computed solar irradiance significantly improved from 89.27 ± 48.08σ W/㎡ (with standard MODTRAN) to 21.35 ± 16.54σ W/㎡ (with augmented multiple regression algorithm). The novel method proposed herein can be a useful tool for the accurate estimation of solar irradiance and atmospheric transmission characteristics of highly localized areas with various weather conditions; it can also be used to correct remotely sensed atmospheric data of such areas.

Development of Train Operation Plan algorithm by using regression models (회귀모형을 이용한 열차운행계획 수립에 관한 알고리즘 개발)

  • Shin, Han-Chul;Kim, Jung-Hyun;Kim, Sang-Hoon;Lee, Se-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.06a
    • /
    • pp.23-24
    • /
    • 2011
  • 본 논문에서는 승객 수송수요 반영 단계에서는 역별 승하차인원, 시간대별 재차인원 등 수송수요에 반영할 기준을 설정하여 수송력과 승차인원의 기준을 판단하고, 열차운행계획 수립 단계에서는 운행구간, 선로용량, 선로조건 등 제약조건과 적정수송력에 맞는 운행계획을 수립하고, 마지막 단계에서 경제성, 능률성, 합리성 등을 감안한 운용효율 향상을 위한 열차 DIA를 작성하고자 한다. 또한 통계적 분석절차에 따라 재차인원과 운행횟수를 각각의 독립변수와 종속변수로 산정하여 두 변수간의 상관관계를 확인한 후 회귀분석을 통해 얻은 회귀식을 실제열차운행 횟수와 비교하여 최적의 열차운행횟수를 산정하였으며 회귀식의 유효성 검증을 통해 열차운행 환경변화에 신속하게 대응할 수 있는 유연한 시스템을 구축한 후 서울도시철도공사 실용 Dia에 적용하여 유효성을 검토하였다.

  • PDF

The Reanalysis of the Donation Data Using the Zero-Inflated Possion Regression (0이 팽창된 포아송 회귀모형을 이용한 기부회수 자료의 재분석)

  • Kim, In-Young;Park, Tae-Kyu;Kim, Byung-Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.819-827
    • /
    • 2009
  • Kim et al. (2006) analyzed the donation data surveyed by Voluneteer 21 in year 2002 at South Korea using a Poisson regression based on the mixture of two Poissons and detected significant variables for affecting the number of donations. However, noting the large deviation between the predicted and the actual frequencies of zero, we developed in this note a Poisson regression model based on a distribution in which zero inflated Poisson was added to the mixture of two Poissons. Thus the population distribution is now a mixture of three Poissons in which one component is concentrated on zero mass. We used the EM algorithm for estimating the regression parameters and detected the same variables with Kim et al's for significantly affecting the response. However, we could estimate the proportion of the fixed zero group to be 0.201, which was the characteristic of this model. We also noted that among two significant variables, the income and the volunteer experience(yes, no), the second variable could be utilized as a strategric variable for promoting the donation.

Divide and conquer kernel quantile regression for massive dataset (대용량 자료의 분석을 위한 분할정복 커널 분위수 회귀모형)

  • Bang, Sungwan;Kim, Jaeoh
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.5
    • /
    • pp.569-578
    • /
    • 2020
  • By estimating conditional quantile functions of the response, quantile regression (QR) can provide comprehensive information of the relationship between the response and the predictors. In addition, kernel quantile regression (KQR) estimates a nonlinear conditional quantile function in reproducing kernel Hilbert spaces generated by a positive definite kernel function. However, it is infeasible to use the KQR in analysing a massive data due to the limitations of computer primary memory. We propose a divide and conquer based KQR (DC-KQR) method to overcome such a limitation. The proposed DC-KQR divides the entire data into a few subsets, then applies the KQR onto each subsets and derives a final estimator by aggregating all results from subsets. Simulation studies are presented to demonstrate the satisfactory performance of the proposed method.

Engagement classification algorithm based on ECG(electrocardiogram) response in competition and cooperation games (심전도 반응 기반 경쟁, 협동 게임 참여자의 몰입 판단 알고리즘 개발)

  • Lee, Jung-Nyun;Whang, Min-Cheol;Park, Sang-In;Hwang, Sung-Teac
    • Journal of Korea Game Society
    • /
    • v.17 no.2
    • /
    • pp.17-26
    • /
    • 2017
  • Excessive use of the internet and smart phones have become a social issue. The level of engagement has both positive and negative effects such as good performance or indulgence phenomenon, respectively. This study was to develop an algorithm to determine the engagement state based on cardiovascular response. The participants were asked to play a pattern matching game and the experimental design was divided into cooperation and competition task to provide the level of engagement. The correlation between heart rate and amplitude was analyzed according to each task. The regression equation and accuracy were verified by polynomial regression analysis. The results showed that heart rate and amplitude were positively correlated when the task was a game, and negatively correlated when there was a reference task. The accuracy of classifying between game and reference task was 89%. The accuracy between tasks was confirmed to be 76.5%. This study is expected to be used to quantitatively evaluate the level of engagement in real time.