• Title/Summary/Keyword: 활성황토

Search Result 50, Processing Time 0.024 seconds

Experimental Study on the Properties of Concrete by the Kinds of Admixture and the Replacement Ratios of Activated Hwangtoh (혼화재 종류 및 활성황토 대체율별 콘크리트의 공학적 특성에 관한 실험적 연구)

  • 최희용;김무한;김문한;황혜주;최성우
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.123-129
    • /
    • 2001
  • Pozzolan is to improve the strength and the durability of concrete as a result of the pozzolanic reaction, Broadly speaking, pozzolanic materials can be artificial materials, such as slica fume and fly ash, and natural material, such as rice husk ash, clay, volcanic ash, clayish pozzolan. Hwangtoh is a mineral which belongs to a group of matakaolin, especially halloysite, and the main elements is SiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$. The purpose of this study is to examine the application of Hwangtoh for the concrete admixtures, the composition of this study is shown as follows. Chapter I is analysis for properties of concrete as the kinds of admixture, and Chapter H is analysis for properties of concrete as the replacement ratio of activated Hwangtoh. As a result of this study, Hwangtoh is found to have high practical use as pozzolanic material, and the pertinent range of replacement ratios of Hwangtoh on cement are 10∼20 %.

Shear and Bond Strength of Activated Hwangtoh Concrete Beam (활성 황토 콘크리트 보의 전단 및 부착 강도)

  • Lee, Nam-Kon;Park, Hong-Gun;Hwang, Hye-Zoo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.685-694
    • /
    • 2010
  • As a eco-friendly material, Hwangtoh (red clay) has been studied for complete or partial replacement of portland cement. Most of existing studies focused on the material properties of the Hwangtoh concrete including the compressive strength, drying shringkage, and creep. In the present study, the shear strength of the beams made with the Hwangtoh concrete was tested. Further, bond strength of tension re-bars embedded in the Hwangtoh concrete was tested. One of the concrete tested consisted of activated Hwangtoh replacing 20% of the cement. The other consisted 100% activated. Hwangtoh replacing all the cement. The beam specimens were tested under two point static loading. The test result showed that the shear strength of activated Hwangtoh concrete beams replacing 20% and 100% of cement was equivalent to that of the ordinary portland cement concrete beam. However, the bond strength of activated Hwangtoh concrete replacing 100% of the cement was less than that of the ordinary portland cement concrete.

Flexural Behavior of Reinforced Concrete Beams mixed with Hwang-toh (황토가 혼입된 철근 콘크리트 보의 휨 거동)

  • Kim, Sung-Bae;Yi, Na-Hyun;Kim, Hyun-Young;Phan, Duc-Hung;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.281-284
    • /
    • 2008
  • Recently, interest in eco-friendly structure has been increased and many researches about hwang-toh are being actively processed. However, most researches are about material properties of hwang-toh, and researches about structural performance are insufficient. Moreover, the usability of activated hwang-toh is being identified in some ways, but its use rate is low in economic aspect in reality. Non-activated hwang-toh is expected to be advantageous in respect of economy but its material and structural performance have not been identified. Therefore, the effect of activated hwang-toh and non-activated hwang-toh on flexural capacity of hwang-toh concrete beam is analyzed in this research.

  • PDF

Flexural Behavior of Hwangtoh Concrete Beams with Recycled PET Fiber (재생 PET섬유가 혼입된 황토 콘크리트 보의 휨 거동)

  • Kim, Sung-Bae;Nam, Jin-Won;Yi, Na-Hyun;Kim, Jang-Jay-Ho;Choi, Hong-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.619-626
    • /
    • 2008
  • There have been numerous studies to develop eco-friendly concrete. The attempt to reduce the amount of cement usage is suggested as one of the solutions for eco-friendly concrete. To reduce the amount of cement usage, the pozzolan-reaction materials such as ground granulated blast furnace slag, fly ash, and meta kaolin are widely used as the mineral admixture. Hwangtoh which deposited broadly in Korea is a well known eco-friendly material and the activated Hwangtoh with pozzolan-reaction can be practically used as a mineral admixture of concrete. Meanwhile, PET fiber made of recycled PET bottle is a type of recycled material, which can be used to control micro cracks in concrete. But the study about concrete mixed with recycled PET fiber is insufficient and the research of Hwangtoh concrete mixed with PET fiber is urgently needed presently. In this study, experiment and analysis flexural behavior of Hwangtoh concrete blended with recycled PET fiber are carried out. The results are discussed in detail.

Flexural Performance of Activated Hwangtoh Concrete Beam (활성 황토 콘크리트 보의 휨 성능)

  • Lee, Nam-Kon;Hwang, Hye-Zoo;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.567-574
    • /
    • 2010
  • As a eco-friendly material, Hwangtoh(red clay) has been studied for a partial or complete replacement of portland cement. Most of existing studies focused on the mechanical properties of the Hwangtoh concrete including the compressive strength, drying shrinkage, creep. In the present study, the flexural capacity of the beams made with the Hwangtoh concrete was tested. One of the concrete tested consisted of activated Hwangtoh replacing 20% of the cement. The other consisted 100% activated Hwangtoh replacing all the cement. The simple beams were tested under two point static loading. The flexural strength, cracking moment, deflection, and ductility were compared with those of the beams made with ordinary portland cement concrete.

New Control Technique of Harmful Algal Blooms by Electrolytic Sea Water Mixed with Yellow Loess (황토의 적조구제효과 및 전해수 혼합에 의한 새로운 적조구제 기술)

  • 배헌민;김창숙;김숙양;조용철;윤성종
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.10a
    • /
    • pp.143-144
    • /
    • 2000
  • 자연황토를 해수와 혼합 분쇄, 적조발생 해역에 정확히 살포하여 보다 경제적으로 황토를 살포하는 황토살포기 및 황토가 pH값의 변화에 따라 활성도가 달라지는 연구결과에 착안하여 해수를 전기분해하여 생성되는 전해수(산성수 및 알칼리수)에 황토를 혼합하여 황토를 활성화시켜 적조구제효율을 높이는 방법에 대하여 연구를 실시, 보다 효율적이며 친환경적인 적조구제 기술을 개발하였다. (중략)

  • PDF

An Experimental Study on the Creep Behavior and Crack Resistance of Hwang-toh Concrete Mixed with Recycled-PET Fiber (재생 PET 섬유가 혼입된 황토 콘크리트의 크리프 거동과 균열저항성에 관한 실험적 연구)

  • Kim, Sung-Bae;Jay Kim, Jang-Ho;Han, Byung-Goo;Hong, Geon-Ho;Song, Jin-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.265-273
    • /
    • 2009
  • There have been numerous studies to develop eco-friendly concrete. The attempt to reduce the amount of cement used is suggested as one of the solutions for eco-friendly concrete. To decrease the usage of cement, the pozzolan reaction materials are used as a mineral admixture. Hwang-toh, which is broadly deposited in Korea is a well known environment friendly material and the activated hwang-toh, which has the property of pozzolan reaction, is alternatively used as a mineral admixture of concrete. The purpose of this study is to investigate the drying shrinkage of hwang-toh concrete mixed with recycled PET fiber. Therefore, drying shrinkage experiments are performed to analyze mechanical property of hwang-toh concrete mixed with recycled PET fiber. Test results showed that the drying shrinkage is controlled by hwang-toh admixture and PET fiber.

Phosphorus Removal in Wastewater Using Activated Ca-Loess Complex

  • Kang, Seong Chul;Lee, Byoung Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.713-721
    • /
    • 2012
  • In many instances phosphorus is a limiting factor for eutrophication in streams, and lakes. Because wastewater treatment plant itself may be the main phosphorus source in a natural water body, removal of phosphorus in final effluent of wastewater treatment processes is required. Amongst various technologies for phosphorus removal in wastewater, adsorption technology was investigated using activated Ca-loess complex. Ca was added in loess to enhance adsorption capacity and intensity of phosphorus. Ca added loess was activated at a high temperature of $400^{\circ}C$ which turned out to be the optimum temperature. Activated Ca-loess complex below $400^{\circ}C$ had not enough strength to be applied as an activated Ca-loess pallet column in wastewater treatment process. Ca-loess complex which activated above $400^{\circ}C$ lost its adsorption capacity as the loess surface was glassified when the activation temperature reached above $400^{\circ}C$20. Even if adsorption capacity of activated Ca-loess was not very high due to the lack of abundant pores on its surface, adsorption intensity was still high because it was activated with added Ca in loess. Activated loess was made by pallets. The activated loess pallets were filled in a column, and were applied in wastewater treatment process. Using an activated Ca-loess pallet column, total phosphorus (T-P) was reduced from about 0.5 mg/l to lower than 0.1 mg/l in wastewater treatment, and ionic phosphorus (phosphate) was completely removed for the four months of pilot plant operation.

Stress-Strain Relationship of Alkali-Activated Hwangtoh Concrete under Chemical Attack (화학적 침해를 받은 알칼리활성 황토콘크리트의 응력-변형률 관계)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.170-176
    • /
    • 2014
  • This study examined the effect of chemical attack on the stress-strain relationship of alkali-activated Hwangtoh concrete. Water-to-binder ratio and air content were selected as mixture parameters. The stress-strain relationship of concrete was measured at chemical immersion times of 0, 7, 28, 56, and 91 days from an age of 28 days. Based on the test results, the reduction in compressive strength of alkali-activated hwangtoh concrete owing to chemical attack was formulated. In sddition the present study demonstrated that the stress-strain behavior of concrete under chemical attack is significantly dependent on the air content and chemical immersion time, indicating the rate of decrease of modulus of elasticity was greater than that of compressive strength at the same immersion time. As a result, the stress-strain behavior of concrete under chemical attack was significantly inconsistent with the conventional models specified in the CEB-FIP provision.

NOx Reduction Performance in Cement Mortar with TiO2 Treatment and Mineral Admixture (무기계 혼화재료를 혼입한 모르타르 시편의 광촉매 처리를 고려한 NOx 저감 성능)

  • Yoon, Yong-Sik;Kim, Hyeok-Jung;Park, Jang-Hyun;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.506-513
    • /
    • 2020
  • In this study, the mechanical properties, absorption, and reduction performance of NOx in the mortar containing mineral admixture like zeolite and active hwangtoh were evaluated. Zeolite and active hwangtoh were used as binder, and zeolite and active hwangtoh were substituted for cement. The substitution ratio of two types of mineral admixtures was considered as 20 and 30% respectively. As a result of evaluating the compressive strength and flexural strength of each mortar specimen, the highest strength in the plain mixture was evaluated. As the substitution ratio of zeolite and active hwangtoh increased, the compressive and flexural strength decreased. In addition, the difference of compressive and flexural strength between active hwangtoh and zeolite mixing was evaluated to be insignificant. To evaluate the absorption rate, the mixture was designed to lower the W/B ratio of the existing mixture and set the substitution ratio of active hwangtoh and zeolite at 25%. The highest absorption ratio in the mortar with zeolite was evaluated, and the difference in absorption ratio between the remaining two mortar mixtures was small. The assessment of reduction performance of NOx considering the application of photocatalyst showed a clearly decreasing reduction behavior, even if they were the same mortar mixture. Zeolite and active hwangtoh also showed a higher NOx reduction than the Plain mixture, because of their porosity properties. In the case of active hwangtoh, the absorption ratio was lower than that of zeolite mixture, but the reduction of NOx performance was better than the result of zeolite mixture.