• Title/Summary/Keyword: 환경 하중 저항성

Search Result 93, Processing Time 0.028 seconds

Target Reliability Index and Load-resistance Factors for the Gravitational Loads-governed Limit States for a Reliability-based Bridge Design Code (신뢰도기반 교량설계기준의 중력방향하중 지배 한계상태에 대한 목표신뢰도지수 및 하중-저항계수)

  • Kim, Jeong-Gon;Kim, Ho-Kyung;Lee, Hae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.299-309
    • /
    • 2022
  • This paper presents a new class of the vehicular live load factor for a reliability-based bridge design code. The significance of the current vehicular live load factor of 1.8 is investigated based on the return period of the vehicular live load and the design life of a bridge. It is shown that the current vehicular live load factor corresponds to a return period of 6.7 million years for a 100-year design life, which seems to be unrealistic in an engineering sense, and that the target reliability of 3.72 is set to too high without any reasoning for the gravitational load-governed limit state compared with that of the other limit states. In case the same return period as the design wind velocity or the ground acceleration is employed for the vehicular live load, the corresponding vehicular live load factor becomes around 1.15, and the target reliability index for the return period may be selected as 2.0 or 2.5 depending on the governing load effect. The complete sets of the load-resistance factors for the proposed target reliability indices are evaluated through optimization.

Design comparison of Fixed Offshore Structures Designed by WSD and LRFD Methods (허용응력설계법 및 하중저항계수설계법에 의한 고정식 해양구조물 설계결과 비교 )

  • Bae-Keun Jeong;Doo-Yong Cho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.42-49
    • /
    • 2023
  • When designing fixed jacket structures, overseas design standards are applied due to the absence of domestic design methods. Although the US API standards are mainly applied, API RP 2A suggests two design methods: the allowable stress design method (WSD) and the load resistance coefficient method (LRFD), and is applied according to the designer's judgment. In this study, the stress ratio of the two design methods was reviewed and compared using SACS, an analysis program dedicated to marine structures, for fixed marine structures actually installed on the domestic coast. As a result of the review, it was found that the LRFD design method showed a greater stress ratio for extreme load analysis and transportation analysis, and the WSD design method showed a greater stress ratio for loading and lifting. Therefore, when applying the design method, it is considered appropriate to select the final design method considering safety and economic feasibility after conducting an applicability review for the two design methods.

접촉 저항법을 응용한 트라이볼로지 문제점의 해석

  • 김청균
    • Tribology and Lubricants
    • /
    • v.10 no.2
    • /
    • pp.1-4
    • /
    • 1994
  • 금속과 금속이 접합할 때 발생하는 고유 저항값은 접촉소재의 종류, 접촉면의 상태, 접촉조건(하중, 온도, 정적 또는 동적인 접촉 등), 주변환경에 따라서 변한다. 소재가 접촉할 때 발생되는 저항값의 변화특성을 적극적으로 이용한 것이 전기 저항법(Electrical Contact Resistance Method)이다. 접촉 저항법의 특징은 접촉시 발생되는 저항값이 미세하게 변화한다 할지라도 모두 계측이 가능하다는 점이다. 그동안의 연구는 ㅈ로 단일 접촉점(Single Contact Spots) 위주의 단편적인 실험적 연구를 통하여 접촉 저항법에 대한 신뢰도 확보에 노력하였으나, 최근에는 접촉점이 인접한 다른 접촉부위에 미치는 영향, 즉 다수 접촉점군(Multiple Contact Spots and Clusters)의 거동해석에 더욱 큰 연구 비중을 두고 있다. 접촉점군 상호간의 영향에 관한 연구가 많이 진행되기는 하였지만 해석모델의 적절성 여부가 실험적 데이타를 통하여 확인이 아직 안되었기 때문에 기존의 접촉저항 추정식을 직접 사용하기가 어려웠으나 최근에 볼군-원판 모델에 대한 접촉점과 다수의 접촉점군 상호간에 발생될 수 있는 접촉저항 특성을 실험적으로 해석하여 보다 정확한 해석모델이 제시되었다.

사고선박 예인시스템 설계 방안에 관한 연구

  • Jeong, Chang-Hyeon;Nam, Taek-Geun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.155-157
    • /
    • 2013
  • 예인시스템의 설계는 예인준비 과정에서 취해질 단계적 지침과 예인선을 선택하고 예인속력을 예측하는 것을 포함한다. 예인시스템을 설계할 때에는 외력환경의 변화 가능성과 예상치 못한 상황을 고려하여 예인선 및 예인설비를 선택하기 때문에 예인색장력 계산, 예인선 및 예인장비의 선정, 그리고 확인 및 수정단계와 같은 주요 3가지 단계를 반복 계산하는 과정이 요구되고, 이를 통하여 최적의 예인시스템을 설계하게 된다. 예인을 계획하고 시스템을 설계할 때 고려할 사항은 예인의 크기 및 조건, 요구되는 예인속력, 사용가능한 예인선의 용량과 예인색 사양, 예인저항에 의한 예인색 장력과 동적하중, 예인색 현수부를 감안한 수심과 예인색길이, 그리고 예인선의 복원성 등을 고려하여야 한다. 이러한 요소들은 상호 연관성이 있으며, 예인속력은 날씨 또는 예인조건에 따라 제한될 수 있다. 그리고 예인시스템은 최상의 배치가 이루어졌는지 확인하기 위해 전체적으로도 점검되어져야 한다.

  • PDF

Experimental Study on the Long-term Performance of TiO2 Concrete for Road Structures (도로 구조물 적용을 위한 TiO2 콘크리트의 장기공용성에 대한 실험적 연구)

  • Lee, Jun Hee;Kim, Young Kyu;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.691-698
    • /
    • 2015
  • In the area of high traffic volume, such as expressway across large cities, the amount of nitrogen oxides (NOx) emitted into the atmosphere as air pollution can be significant since NOx gases are the major cause of smog and acid rain. Recently, the importance of NOx removal has arisen in the world. Titanium dioxide ($TiO_2$), that is one of photocatalytic reaction material, is very efficient for removing NOx. Therefore, application of $TiO_2$ concrete is a good alternative in order to remove NOx which is a main cause of air pollution. This experimental study aimed to evaluate the long-term performance of $TiO_2$ concrete such as NOx removal efficiency due to performance period and environmental resistance for application of road structures. It was found that the $TiO_2$ is reasonable applicable on the road structure because $TiO_2$ concrete has a long-term performance.

Structural Performance Assessment of Buildings Considering Beam Discontinuity and Horizontal Irregularity under Wind and Earthquake Loads (보부재 불연속성과 수평비정형성을 고려한 건물의 풍하중과 지진하중에 의한 응답해석)

  • Chakraborty, Sudipta;Islam, Md. Rajibul;Kim, Dookie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.10-19
    • /
    • 2022
  • Irregularity in structural shape is a ubiquitous phenomenon. Structural hazards evoked from irregularity need to be checked against extreme lateral loadings. Structures containing four distinct types of irregularities in terms of continuity and discontinuity in upper half-length and all story levels along with O-shape are investigated. The structures were analyzed numerically and different seismic responses such as displacements, bending moment, axial forces, torsions, story drift, etc. were scrutinized. The seismic and wind load analysis was conducted for ACI 318-11 conditions. Results show that buildings having discontinuous beams on the upper half exhibit better resilience. It is also concluded that O-shaped building structures provide better resistance to overturning, making this shape relatively safe.

Resistance Factors of Driven Steel Pipe Piles for LRFD Design in Korea (LRFD 설계를 위한 국내 항타강관말뚝의 저항계수 산정)

  • Park, Jae Hyun;Huh, Jungwon;Kim, Myung Mo;Kwak, Kiseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.367-377
    • /
    • 2008
  • As part of study to develop LRFD (Load and Resistance Factor Design) codes for foundation structures in Korea, resistance factors for static bearing capacity of driven steel pipe piles were calibrated in the framework of reliability theory. The 57 data sets of static load tests and soil property tests conducted in the whole domestic area were collected and these load test piles were sorted into two cases: SPT N at pile tip less than 50, SPT N at pile tip equal to or more than 50. The static bearing capacity formula and the Meyerhof method using N values were applied to calculate the expected design bearing capacities of the piles. The resistance bias factors were evaluated for the two static design methods by comparing the representative measured bearing capacities with the expected design values. Reliability analysis was performed by two types of advanced methods: the First Order Reliability Method (FORM), and the Monte Carlo Simulation (MCS) method using resistance bias factor statistics. The target reliability indices are selected as 2.0 and 2.33 for group pile case and 2.5 for single pile case, in consideration of the reliability level of the current design practice, redundancy of pile group, acceptable risk level, construction quality control, and significance of individual structure. Resistance factors of driven steel pipe piles were recommended based on the results derived from the First Order Reliability Method and the Monte Carlo Simulation method.

거대 정지궤도위성 형상 설계

  • Kim, Chang-Ho;Kim, Gyeong-Won;Kim, Seon-Won;Im, Jae-Hyeok;Kim, Seong-Hun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.173.2-173.2
    • /
    • 2012
  • 위성체가 발사체에 실려 발사될 때에 매우 높은 가속도에 의한 정적, 동적 하중 및 공기의 저항에 의한 하중, 연소 가스 분출시 발생하는 음향에 의한 하중, 발사체로부터 분리될 때 발생하는 충격 하중 등 여러 가지의 극심한 하중을 겪게 된다. 이러한 발사 환경에 대한 안정성을 검토하기 위해 발사체 업체에서 제공하는 매뉴얼 상의 설계 조건을 이용하여 설계하고 해석하여 검증한다. 천리안 위성의 후속 위성으로 해상도 및 채널 성능 향상된 차세대 기상탑재체를 탑재하는 정지궤도 복합위성을 개발 중이다. 임무 수명 기간을 연장할 수 있는 3.5톤급 혹은 그 이상의 플랫폼에 대한 형상 설계를 수행하였고 그 내용을 목적으로 한다.

  • PDF

A Study on the Application of Very Rapid Hardening Acrylic Polymer Modified Concrete for Bonded Concrete Overlay Method (접착식 콘크리트 덧씌우기 공법을 위한 초속경 아크릴계 폴리머 개질 콘크리트의 적용성 연구)

  • Lee, Seung-Woo;Kim, Young-Kyu;Lee, Poong-Hee
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.139-148
    • /
    • 2011
  • Asphalt concrete overlay method is used by general maintenance and rehabilitation of construction for aged concrete pavement in Korea. However, in case of the AC overlay method to extend service life of the existing concrete pavements, various distresses of reflection crack, pothole and rutting are the typical problems of the asphalt overlay on existing concrete pavement since it has different physical characteristics between asphalt overlay and existing concrete pavement. To achieve this, application of concrete overlay method is required instead of AC overlay method. Concrete overlay method has advantages that can reduce maintenance cycle and costs since it has excellent bearing value for heavy vehicles and no rutting. However, technical problems of detour road construction, traffic control and other disadvantages happened by long curing time. Thus, in this study and experimental research were launched to evaluate the workability, durability and resistance against environmental loading of Very Rapid Hardening Acrylic Polymer Modified Concrete(VRH-APMC) for application of bonded concrete overlay method. Test results showed that the compressive and bond strength were exceed 21MPa and 1.4MPa of target strength after four hours for rapid traffic opening properties. And tests of resistance against environmental loading results showed that VRH-APMC secured excellent durability. Thus, it was known that VRH-APMC was suitable material for large scale bonded concrete overlay method, and it was possible to use maintenance and rehabilitation method which needs enough workability and rapid traffic opening.

Resistance and Structural Safety of a 3M Carbon Fibier-based Kayak (3미터급 카본 카약의 저항성능 및 구조 안전성 연구)

  • Seo, Kwang-Cheol;Lee, Gyeong-Woo;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.482-488
    • /
    • 2019
  • Leisure and business facilities have been steadily developing in Korea. Among waterborne leisure vessels and equipment, the distribution and sale of kayaks and canoes have significantly increased. Previously, (FRP) materials were primarily employed for constructing kayaks. However, owing to global warming and depletion of natural resources, the demand for non-polluting renewable energy is rapidly increasing, which has increased the demand for carbon fibers. To meet the requirements of changing social consciousness, a carbon fiber-based commercial kayak was designed in this study. Resistance analysis and structural safety were conducted by employing software tool for verifying the reliability of the proposed kayak. The pressure resistance and frictional resistance were examined in a wide range of speed. Obtained results indicate that at speeds greater than 2.6 m/s, the pressure resistance significantly increases and the total resistance also increases. Furthermore, the results corroborate that the proposed kayak structure has a adequate safety with respect to the design loads that are considered during operating conditions.