DOI QR코드

DOI QR Code

Resistance Factors of Driven Steel Pipe Piles for LRFD Design in Korea

LRFD 설계를 위한 국내 항타강관말뚝의 저항계수 산정

  • 박재현 (한국건설기술연구원 토질 및 기초연구실) ;
  • 허정원 (전남대학교 건설환경공학부) ;
  • 김명모 (서울대학교 건설환경공학부) ;
  • 곽기석 (한국건설기술연구원 토질 및 기초연구실)
  • Received : 2008.08.05
  • Accepted : 2008.10.22
  • Published : 2008.11.29

Abstract

As part of study to develop LRFD (Load and Resistance Factor Design) codes for foundation structures in Korea, resistance factors for static bearing capacity of driven steel pipe piles were calibrated in the framework of reliability theory. The 57 data sets of static load tests and soil property tests conducted in the whole domestic area were collected and these load test piles were sorted into two cases: SPT N at pile tip less than 50, SPT N at pile tip equal to or more than 50. The static bearing capacity formula and the Meyerhof method using N values were applied to calculate the expected design bearing capacities of the piles. The resistance bias factors were evaluated for the two static design methods by comparing the representative measured bearing capacities with the expected design values. Reliability analysis was performed by two types of advanced methods: the First Order Reliability Method (FORM), and the Monte Carlo Simulation (MCS) method using resistance bias factor statistics. The target reliability indices are selected as 2.0 and 2.33 for group pile case and 2.5 for single pile case, in consideration of the reliability level of the current design practice, redundancy of pile group, acceptable risk level, construction quality control, and significance of individual structure. Resistance factors of driven steel pipe piles were recommended based on the results derived from the First Order Reliability Method and the Monte Carlo Simulation method.

국내 기초구조물에 대한 하중저항계수설계법 개발의 일환으로 신뢰성에 기반한 항타강관말뚝의 저항계수를 산정하였다. 국내 정재하시험 및 지반조사 자료를 수집, 분석하여 측정 지지력 확인이 가능한 57개 자료에 대해서 선단부 N치 50을 기준으로 두 그룹으로 분류하였다(N<50, $N{\geq}50$). 구조물기초설계기준에서 제안하고 있는 두 가지 정역학적 설계공식에 대해서 대표 측정지지력과 설계지지력을 비교함으로써 저항편향계수를 평가하였다. 저항편향계수의 통계특성을 이용하여 일차신뢰도법 및 몬테카를로 시뮬레이션에 의한 엄밀한 신뢰성 분석을 실시하였다. 신뢰성 분석 결과 및 국내 말뚝기초의 설계, 시공 실무 특성을 종합적으로 고려하여 목표 신뢰도지수를 결정하였다. 무리말뚝의 여용성을 적용할 수 있는 경우 2.0, 2.33, 무리말뚝의 여용성을 적용할 수 없는 경우 2.5의 목표 신뢰도지수를 결정하였고, 일차신뢰도법 및 몬테카를로 시뮬레이션을 적용하여 저항계수를 산정하였다.

Keywords

References

  1. 건설교통부(2001) 도로교설계기준, 대한토목학회.
  2. 건설교통부(2003) 구조물기초설계기준, (사)한국지반공학회.
  3. 곽기석, 박재현, 최용규, 허정원(2006) LRFD 설계를 위한 항타강관말뚝의 저항편향계수 산정. 대한토목학회 논문집, 대한토목학회, 제26권, 제5C호, pp. 343-350.
  4. 곽기석, 허정원, 김경준, 박재현, 이주형(2008) 국내 항타강관말뚝설계법의 목표 신뢰도지수. 대한토목학회 논문집, 대한토목학회, 제28권, 제1C호, pp. 19-29.
  5. 한국건설기술연구원(2007) LRFD 기초구조물 설계를 위한 저항계수 결정 연구, 건설교통부 건설교통 R&D 정책.인프라 사업 2차년도 연구보고서, 건설교통부.
  6. 한국건설기술연구원(2008) LRFD 기초구조물 설계를 위한 저항계수 결정 연구, 국토해양부 건설교통 R&D 정책.인프라 사업 3차년도 최종 연구보고서(안), 국토해양부.
  7. 허정원, 박재현, 김경준, 이주형, 곽기석(2007) 국내 항타강관말뚝설계법의 신뢰성평가. 한국지반공학회 논문집, 한국지반공학회, 제23권, 제12호, pp. 61-73.
  8. (사)한국지반공학회(1997) 지반조사결과의 해석 및 이용, 지반공학시리즈 1, 도서출판 구미서관.
  9. (사)한국지반공학회(2002) 깊은기초, 지반공학시리즈 4, 도서출판구미서관.
  10. American Society of Civil Engineers (1997) Standard Guidelines for the Design and Installation of Pile Foundations. ASCE 20-96, ASCE, Reston, Virginia, USA.
  11. American Association of State Highway and Transportation Official (AASHTO)( 2007) AASHTO LRFD Bridge Design Specifications. Fourth Edition. AASHTO, Washington D.C.
  12. American Concrete Institute (ACI) (1999) Building Code Requirements for Structural Concrete (318-99) and Commentary (318R-99), ACI, Detroit.
  13. American Institute of Steel Construction (AISC) (1994) Load and Resistance Factor Design Specification for Structural Steel Buildings. Second Edition. AISC, Chicago.
  14. American Petroleum Institute (API) (1993) Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms-Load and Resistance Factor Design. API, Washington, D.C.
  15. Barker, R.M. Duncan, J.M. Rojiani, K.S. Ooi, P.S.K., Tan, C.K., and Kim, S.C. (1991) Manual for the Design of Bridge Foundations. NCHRP Report 343, Transportation Research Board, Washington, D.C.
  16. Becker, D.E. (1996) Limit state design for foundations. part I. An overview of the foundation design process. Canadian Geotechnical Journal, Vol. 33, No. 6, pp. 956-983. https://doi.org/10.1139/t96-124
  17. Danish Geotechnical Institute (DGI) (1985) Code of Practice for Foundation Engineering. DGI, Copenhagen, Denmark.
  18. European Committee for Standardization (CEN) (1994) Eurocode 7: Geotechnical Design. I: General Rules. CEN, Central Secretariat, Brussels.
  19. Goble, G. (1999) Geotechnical Related Development and Implementation of Load and Resistance Factor Design(LRFD) Methods. NCHRP Synthesis of Highway Practice 276, Transportation Research Board, Washington, D.C.
  20. Haldar, A. and Mahadevan, S. (2000) Probability, Reliability and Statistical Methods in Engineering Design. John Wiley & Sons, New York, NY.
  21. Hansell, W.C., and Viest, I.M. (1971) Load design for steel highway bridges, american institute of steel construction. Engineering Journal, Vol. 8, No. 4, pp. 113-123.
  22. Ministry of Transportation (MOT) (1992) Ontario Highway Bridge Design Code. MOT, Downsview, Ontario, Canada.
  23. National Research Council of Canada (NRC) (1995) National Building Code of Canada, NRC, Ottawa, Canada.
  24. Nowak, A.(1999) Calibration of LRFD Bridge Design Code. NCHRP Report 368, Transportation Research Board, Washington, D.C.
  25. Paikowsky, S.G. (2004) Load and Resistance Factor Design for Deep Foundations. NCHRP report 507, Transportation Research Board, Washington, D.C.
  26. Rackwitz, R. and Fiessler, B. (1978) Structural reliability under combined random load sequences. Computers & Structures, Vol. 9, pp. 484-494.
  27. Scott, B., Kim, B.J., and Salgado, R. (2003) Assessment of current load factors for use in geotechnical load and resistance factor design, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 4, pp. 287-295 https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(287)